
Randomised Subspace Methods for Scalable Derivative-Free

Optimisation

Joint work with Coralia Cartis (Oxford), Clément Royer (Paris-Dauphine PSL), Warren Hare

(UBC)

Lindon Roberts, University of Sydney (lindon.roberts@sydney.edu.au)

Applied Mathematics Seminar, UNSW Sydney

19 September 2024



Further Reading

This talk is based on:

� C. Cartis & LR, Scalable subspace methods for derivative-free nonlinear

least-squares optimization, Mathematical Programming 199:1–2 (2023),

pp. 461–524.

� LR & C. W. Royer, Direct search based on probabilistic descent in reduced spaces,

SIAM Journal on Optimimization 33:4 (2023), pp. 3057–3082.

� W. Hare, LR & C. W. Royer, Expected decrease for derivative-free algorithms using

random subspaces, Mathematics of Computation, accepted, 2024.

Software packages are available on Github.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 1



Outline

1. Introduction to derivative-free optimisation (DFO)

2. Subspace DFO methods

3. Average-case analysis

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 2



Optimisation in Data Science

Optimisation is fundamental to data science. For example, to fit a predictive model

v ≈ m(u, x)

(e.g. linear/nonlinear regression, neural networks) we usually have training data (u i , v i )

and solve the empirical risk minimisation problem

min
x

f (x) =
1

N

N∑
i=1

ℓ(v i ,m(u i , x)),

for some loss function ℓ, for example ℓ(v1, v2) = ∥v1 − v2∥2.

This is a well-studied mathematical problem (and relevant to many other disciplines too).

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 3



Gradient Descent

min
x∈Rn

f (x)

For any x , the vector ∇f (x) points in the direction of fastest ascent (locally).

Gradient descent iterates to a solution by stepping in the −∇f direction

xk+1 = xk − αk∇f (xk)

Theorem

Suppose f ∈ C 2(Rn) bounded below, with ∥∇2f (x)∥2 ≤ Hmax everywhere.

If αk = 1/Hmax for all k , then limk→∞∇f (xk) = 0.

If N large, often average over random subsets to get random approximations

gk ≈ ∇f (xk) → stochastic gradient descent.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 4



Gradient Descent

min
x∈Rn

f (x)

For any x , the vector ∇f (x) points in the direction of fastest ascent (locally).

Gradient descent iterates to a solution by stepping in the −∇f direction

xk+1 = xk − αk∇f (xk)

Theorem

Suppose f ∈ C 2(Rn) bounded below, with ∥∇2f (x)∥2 ≤ Hmax everywhere.

If αk = 1/Hmax for all k , then limk→∞∇f (xk) = 0.

If N large, often average over random subsets to get random approximations

gk ≈ ∇f (xk) → stochastic gradient descent.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 4



Gradient Descent

min
x∈Rn

f (x)

For any x , the vector ∇f (x) points in the direction of fastest ascent (locally).

Gradient descent iterates to a solution by stepping in the −∇f direction

xk+1 = xk − αk∇f (xk)

Theorem

Suppose f ∈ C 2(Rn) bounded below, with ∥∇2f (x)∥2 ≤ Hmax everywhere.

If αk = 1/Hmax for all k , then limk→∞∇f (xk) = 0.

If N large, often average over random subsets to get random approximations

gk ≈ ∇f (xk) → stochastic gradient descent.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 4



Gradient Descent

min
x∈Rn

f (x)

For any x , the vector ∇f (x) points in the direction of fastest ascent (locally).

Gradient descent iterates to a solution by stepping in the −∇f direction

xk+1 = xk − αk∇f (xk)

Theorem

Suppose f ∈ C 2(Rn) bounded below, with ∥∇2f (x)∥2 ≤ Hmax everywhere.

If αk = 1/Hmax for all k , then limk→∞∇f (xk) = 0.

If N large, often average over random subsets to get random approximations

gk ≈ ∇f (xk) → stochastic gradient descent.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 4



Gradient Descent: Practicalities

xk+1 = xk − αk∇f (xk)

� How to calculate derivatives of f ?

– Write code by hand

– Finite differences, f ′(x) ≈ f (x+h)−f (x)
h

– Algorithmic differentiation/backpropagation

� Impractical if function evaluation is black-box, computationally expensive or noisy

� How to pick stepsize/learning rate?

– Calculate Hmax

– Hyperparameter tuning

– Adaptive procedures (e.g. linesearch)

� Prefer adaptive procedures (no tuning, fits to local curvature)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 5



Gradient Descent: Practicalities

xk+1 = xk − αk∇f (xk)

� How to calculate derivatives of f ?

– Write code by hand

– Finite differences, f ′(x) ≈ f (x+h)−f (x)
h

– Algorithmic differentiation/backpropagation

� Impractical if function evaluation is black-box, computationally expensive or noisy

� How to pick stepsize/learning rate?

– Calculate Hmax

– Hyperparameter tuning

– Adaptive procedures (e.g. linesearch)

� Prefer adaptive procedures (no tuning, fits to local curvature)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 5



Gradient Descent: Practicalities

xk+1 = xk − αk∇f (xk)

� How to calculate derivatives of f ?

– Write code by hand

– Finite differences, f ′(x) ≈ f (x+h)−f (x)
h

– Algorithmic differentiation/backpropagation

� Impractical if function evaluation is black-box, computationally expensive or noisy

� How to pick stepsize/learning rate?

– Calculate Hmax

– Hyperparameter tuning

– Adaptive procedures (e.g. linesearch)

� Prefer adaptive procedures (no tuning, fits to local curvature)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 5



Gradient Descent: Practicalities

xk+1 = xk − αk∇f (xk)

� How to calculate derivatives of f ?

– Write code by hand

– Finite differences, f ′(x) ≈ f (x+h)−f (x)
h

– Algorithmic differentiation/backpropagation

� Impractical if function evaluation is black-box, computationally expensive or noisy

� How to pick stepsize/learning rate?

– Calculate Hmax

– Hyperparameter tuning

– Adaptive procedures (e.g. linesearch)

� Prefer adaptive procedures (no tuning, fits to local curvature)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 5



Derivative-Free Optimisation

For black-box, computationally expensive and/or noisy functions, we cannot assume

access to gradient information.

Alternative: derivative-free optimisation (DFO)

� Assume can evaluate f (x) but not ∇f (x) (but still assume f is differentiable)

� Several approaches: Nelder-Mead, genetic algorithms, Bayesian optimisation, ...

� Seek local minimiser (actually, approximate stationary point: ∥∇f (x)∥2 ≤ ϵ)

� Focus on efficient & adaptive methods

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 6



Derivative-Free Optimisation

For black-box, computationally expensive and/or noisy functions, we cannot assume

access to gradient information.

Alternative: derivative-free optimisation (DFO)

� Assume can evaluate f (x) but not ∇f (x) (but still assume f is differentiable)

� Several approaches: Nelder-Mead, genetic algorithms, Bayesian optimisation, ...

� Seek local minimiser (actually, approximate stationary point: ∥∇f (x)∥2 ≤ ϵ)

� Focus on efficient & adaptive methods

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 6



Derivative-Free Optimisation

For black-box, computationally expensive and/or noisy functions, we cannot assume

access to gradient information.

Alternative: derivative-free optimisation (DFO)

� Assume can evaluate f (x) but not ∇f (x) (but still assume f is differentiable)

� Several approaches: Nelder-Mead, genetic algorithms, Bayesian optimisation, ...

� Seek local minimiser (actually, approximate stationary point: ∥∇f (x)∥2 ≤ ϵ)

� Focus on efficient & adaptive methods

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 6



Applications

Application 1: Climate Modelling [Tett et al., 2022]

� Parameter calibration for global climate models (least squares minimisation)

� One model run = simulate global climate for 5 years = expensive

� Very complicated, chaotic physics = black-box & noisy
180° 120°W 60°W 0°W 60°E 120°E 180°

60°S

30°S

0°

30°N

60°N

a ) CE7 Temp. CV(%)

 5

 5  5  5 5

 5

 5
 5  5

 5  5
 5

10
1010

1010

10 10
10

10

10 10

10
10

10

10 1010

10

1010

10

20

20

2020
20

20

20

180° 120°W 60°W 0°W 60°E 120°E 180°

60°S

30°S

0°

30°N

60°N

b ) DF14 Temp. CV(%)

 2

 2

 5
 5

 5
 5

 5

 5  5
 5

 5

 5 5

 5 5
 5

 5

 5

 5
 5

 5

 5

10
10

10

10

10

10

10

10

10 1010

10

10

10

10 1010

10 10

2020

20
2020
20

20

2020

50

0 2 5 10 20 50

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 7



Applications

Application 2: Adversarial Example Generation [Alzantot et al., 2019]

� Find perturbations of neural network inputs which are misclassified (min. probability

of correct label/max. probability of desired incorrect label)

� Neural network structure assumed to be unknown = black-box

� Want to test very few examples ≈ expensive

� Useful for copyright protection of artists’ work against generative AI [Shan et al., 2023]

Image from [Goodfellow et al., 2015]
Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 8



Applications

Application 3: Fine-Tuning Large Language Models [Malladi et al., 2023]

� Take pre-trained LLM, tweak parameters to be better at a specific task
– e.g. Sentiment analysis: “[input text]. It was...” (good or bad?)

� Very large models = backpropagation expensive & distributed

� DFO method (MeZO) uses 12x less memory than gradient-based methods (FT) but

with comparable performance

Image from [Malladi et al., 2023]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 9



Direct Search

Method 1: Direct Search (simple & easily generalised)

� Given xk ∈ Rn and ∆k > 0, choose a set Dk ⊂ Rn of m vectors
� If there exists d k ∈ Dk with f (xk +∆kd k) < f (xk)− 1

2∆
2
k∥d k∥22

– Set xk+1 = xk +∆kd k and increase ∆k

– Otherwise, set xk+1 = xk and decrease ∆k

For convergence, need Dk to be κ-descent:

max
d∈Dk

−dT∇f (xk)

∥d∥2 · ∥∇f (xk)∥2
≥ κ ∈ (0, 1]

i.e. there is a vector d making an acute angle with −∇f (xk).

Examples: {±e1, . . . ,±en} with κ = 1/
√
n or {e1, . . . , en,−e} with κ ∼ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 10



Direct Search

Method 1: Direct Search (simple & easily generalised)

� Given xk ∈ Rn and ∆k > 0, choose a set Dk ⊂ Rn of m vectors
� If there exists d k ∈ Dk with f (xk +∆kd k) < f (xk)− 1

2∆
2
k∥d k∥22

– Set xk+1 = xk +∆kd k and increase ∆k

– Otherwise, set xk+1 = xk and decrease ∆k

For convergence, need Dk to be κ-descent:

max
d∈Dk

−dT∇f (xk)

∥d∥2 · ∥∇f (xk)∥2
≥ κ ∈ (0, 1]

i.e. there is a vector d making an acute angle with −∇f (xk).

Examples: {±e1, . . . ,±en} with κ = 1/
√
n or {e1, . . . , en,−e} with κ ∼ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 10



Direct Search

Method 1: Direct Search (simple & easily generalised)

� Given xk ∈ Rn and ∆k > 0, choose a set Dk ⊂ Rn of m vectors
� If there exists d k ∈ Dk with f (xk +∆kd k) < f (xk)− 1

2∆
2
k∥d k∥22

– Set xk+1 = xk +∆kd k and increase ∆k

– Otherwise, set xk+1 = xk and decrease ∆k

For convergence, need Dk to be κ-descent:

max
d∈Dk

−dT∇f (xk)

∥d∥2 · ∥∇f (xk)∥2
≥ κ ∈ (0, 1]

i.e. there is a vector d making an acute angle with −∇f (xk).

Examples: {±e1, . . . ,±en} with κ = 1/
√
n or {e1, . . . , en,−e} with κ ∼ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 10



Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 11



Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 11



Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 11



Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 11



Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 11



Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 11



Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 11



Model-Based Optimisation

Method 2: Model-Based Optimisation (c.f. Bayesian optimisation)

� Build a Taylor series-like model

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

� Get step by minimising model in a neighbourhood

sk = argmin
s∈Rn

mk(s) subject to ∥s∥2 ≤ ∆k

=⇒ ‘trust region’ subproblem – specialised algorithms exist

� Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 12



Model-Based Optimisation

� Build a Taylor series-like model

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How?

Interpolate f over a set of points — find gk , Hk such that

mk(y − xk) = f (y), ∀y ∈ Y

For convergence, need mk to be fully linear:

|f (xk + s)−mk(s)| ≤ O(∆2
k) and ∥∇f (xk + s)−∇mk(s)∥2 ≤ O(∆k)

Achievable if points in Y are well-spaced (in a specific sense).

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 13



Model-Based Optimisation

� Build a Taylor series-like model

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points — find gk , Hk such that

mk(y − xk) = f (y), ∀y ∈ Y

For convergence, need mk to be fully linear:

|f (xk + s)−mk(s)| ≤ O(∆2
k) and ∥∇f (xk + s)−∇mk(s)∥2 ≤ O(∆k)

Achievable if points in Y are well-spaced (in a specific sense).

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 13



Model-Based Optimisation

� Build a Taylor series-like model

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points — find gk , Hk such that

mk(y − xk) = f (y), ∀y ∈ Y

For convergence, need mk to be fully linear:

|f (xk + s)−mk(s)| ≤ O(∆2
k) and ∥∇f (xk + s)−∇mk(s)∥2 ≤ O(∆k)

Achievable if points in Y are well-spaced (in a specific sense).

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 13



Example: Model-Based DFO

1. Choose interpolation set

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

2. Interpolate & minimise...

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

3. Add new point to interpolation set (replace a bad point)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

4. Repeat with new interpolation set & model

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

4. Repeat with new interpolation set & model

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

4. Repeat with new interpolation set & model

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

4. Repeat with new interpolation set & model

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

4. Repeat with new interpolation set & model

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

4. Repeat with new interpolation set & model

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Example: Model-Based DFO

4. Repeat with new interpolation set & model

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 14



Complexity Theory

Analyse methods using worst-case complexity: how long before ∥∇f (xk)∥2 ≤ ϵ?

Metric Deriv-based Model-based Direct search

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n3ϵ−2) O(n2ϵ−2)

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016; Vicente, 2013]

� Same ϵ dependency as derivative-based, but scales badly with problem dimension n

� Model-based methods also have substantial linear algebra work for interpolation

and geometry management: at least O(n3) flops per iteration

Challenge

How can DFO methods be made scalable?

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 15



Complexity Theory

Analyse methods using worst-case complexity: how long before ∥∇f (xk)∥2 ≤ ϵ?

Metric Deriv-based Model-based Direct search

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n3ϵ−2) O(n2ϵ−2) O(n2ϵ−2) O(nϵ−2)

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016; Vicente, 2013]

� Same ϵ dependency as derivative-based, but scales badly with problem dimension n

� Model-based methods also have substantial linear algebra work for interpolation

and geometry management: at least O(n3) O(n) flops per iteration

Challenge

How can DFO methods be made scalable?

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 15



Outline

1. Introduction to derivative-free optimisation (DFO)

2. Subspace DFO methods

3. Average-case analysis

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 16



Randomised methods

Challenge

How can DFO methods be made scalable?

The machine learning community often uses randomised finite differencing (‘gradient

sampling’)

∇f (x) ≈
[
f (x + hv)− f (x)

h

]
v ,

for random v (e.g. standard Gaussian). [Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017]

� Better complexity, but still need expensive hyperparameter tuning

� More structure in sampling (e.g. fully linear requirements) gives better gradient

estimates [Berahas et al., 2022]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 17



Randomised methods

Challenge

How can DFO methods be made scalable?

The machine learning community often uses randomised finite differencing (‘gradient

sampling’)

∇f (x) ≈
[
f (x + hv)− f (x)

h

]
v ,

for random v (e.g. standard Gaussian). [Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017]

� Better complexity, but still need expensive hyperparameter tuning

� More structure in sampling (e.g. fully linear requirements) gives better gradient

estimates [Berahas et al., 2022]

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 17



Randomised methods

Challenge

How can DFO methods be made scalable?

Randomisation is still a promising approach:

� Make search directions κ-descent with probability < 1 [Gratton et al., 2015]

� Make model fully linear with probability < 1 [Gratton et al., 2017]

Problem: Improves complexity for direct search, but not for model-based!

Why? Direct search formulation effectively allows dimensionality reduction (sample ≪ n

directions).

Goal

Use dimensionality reduction techniques suitable for both classes.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 18



Randomised methods

Challenge

How can DFO methods be made scalable?

Randomisation is still a promising approach:

� Make search directions κ-descent with probability < 1 [Gratton et al., 2015]

� Make model fully linear with probability < 1 [Gratton et al., 2017]

Problem: Improves complexity for direct search, but not for model-based!

Why? Direct search formulation effectively allows dimensionality reduction (sample ≪ n

directions).

Goal

Use dimensionality reduction techniques suitable for both classes.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 18



Randomisation for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose x1, . . . , xN ∈ Rd and ϵ ∈ (0, 1). Let A ∈ Rp×d be a matrix with

i.i.d. N (0, p−2) entries and p ∼ log(N)/ϵ. Then with high probability,

(1− ϵ)∥x i − x j∥2 ≤ ∥Ax i − Ax j∥2 ≤ (1 + ϵ)∥x i − x j∥2, ∀i , j = 1, . . . ,N.

� Random projections approximately preserve distances (& inner products, norms, ...)

� Reduced dimension p depends only on # of points N, not the ambient dimension d !

� Other random constructions satisfy J-L Lemma (Haar subsampling, hashing, ...)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 19



Randomisation for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose x1, . . . , xN ∈ Rd and ϵ ∈ (0, 1). Let A ∈ Rp×d be a matrix with

i.i.d. N (0, p−2) entries and p ∼ log(N)/ϵ. Then with high probability,

(1− ϵ)∥x i − x j∥2 ≤ ∥Ax i − Ax j∥2 ≤ (1 + ϵ)∥x i − x j∥2, ∀i , j = 1, . . . ,N.

� Random projections approximately preserve distances (& inner products, norms, ...)

� Reduced dimension p depends only on # of points N, not the ambient dimension d !

� Other random constructions satisfy J-L Lemma (Haar subsampling, hashing, ...)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 19



Subspace methods

We use a subspace method: only search in low-dimensional subspaces of Rn

Subspace framework:

� Generate subspace of dimension p ≪ n given by col(Pk) for random Pk ∈ Rn×p

� Direct search: choose Dk ⊂ Rp which is κ-descent for PT
k ∇f (xk) ∈ Rp

� Model-based: build a low-dimensional model m̂k(ŝ) which is fully linear for

f̂ (ŝ) := f (xk + Pk ŝ) : Rp → R

Fewer interpolation/sample points needed, cheap linear algebra (everything in Rp)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 20



Subspace methods

We use a subspace method: only search in low-dimensional subspaces of Rn

Subspace framework:

� Generate subspace of dimension p ≪ n given by col(Pk) for random Pk ∈ Rn×p

� Direct search: choose Dk ⊂ Rp which is κ-descent for PT
k ∇f (xk) ∈ Rp

� Model-based: build a low-dimensional model m̂k(ŝ) which is fully linear for

f̂ (ŝ) := f (xk + Pk ŝ) : Rp → R

Fewer interpolation/sample points needed, cheap linear algebra (everything in Rp)

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 20



Subspace methods — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

∥PT
k ∇f (xk)∥2 ≥ α∥∇f (xk)∥2, for some α > 0.

i.e. if there is still work to do, then we know this by only inspecting f in the subspace.

Key Assumption

The subspace Pk is well-aligned with probability 1− δ.

Using J-L lemma, choose p ∼ (1− α)−2| log δ| = O(1) independent of n.

Data oblivious: don’t need to know ∇f (xk) when generating Pk .

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 21



Subspace methods — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

∥PT
k ∇f (xk)∥2 ≥ α∥∇f (xk)∥2, for some α > 0.

i.e. if there is still work to do, then we know this by only inspecting f in the subspace.

Key Assumption

The subspace Pk is well-aligned with probability 1− δ.

Using J-L lemma, choose p ∼ (1− α)−2| log δ| = O(1) independent of n.

Data oblivious: don’t need to know ∇f (xk) when generating Pk .

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 21



Subspace DFO — Complexity

Theorem (Cartis & LR, 2023; LR & Royer, 2023)

If f is sufficiently smooth and bounded below and ϵ sufficiently small, then

P
[
Kϵ ≤ C (p, α, δ)ϵ−2

]
≥ 1− e−c(p,α,δ)ϵ−2

,

where Kϵ is the first iteration with ∥∇f (xk)∥2 ≤ ϵ.

� Implies E [Kϵ] = O(ϵ−2) and infk ∥∇f (xk)∥2 = 0 almost surely

� O(p) evaluations per iteration, so same bounds for evaluation complexity

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 22



Subspace methods — Complexity

Standard methods:

Metric Deriv-based Model-based Direct search Rand. FD

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n3ϵ−2) O(n2ϵ−2) O(nϵ−2)

Model-based methods have O(n3) linear algebra work per iteration.

Using random subspaces:

Metric Deriv-based Model-based Direct search Rand. FD

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n2ϵ−2) O(nϵ−2) O(nϵ−2)

Model-based methods have O(n) linear algebra work per iteration.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 23



Example Results

Example results for different subspace dimensions p:

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
p

or
ti

on
p

ro
b

le
m

s
so

lv
ed

p = 1

p = 2

p = 3

p = 4

p = 5

Direct Search

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

p
ro

b
le

m
s

so
lv

ed

p = 1

p = 2

p = 3

p = 4

p = 5

Model-Based

Fraction of test problems solved vs. # evaluations of f — higher is better.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 24



Example Results

Example results for different subspace dimensions p:

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
p

or
ti

on
p

ro
b

le
m

s
so

lv
ed

p = 1

p = 2

p = 3

p = 4

p = 5

Direct Search

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

p
ro

b
le

m
s

so
lv

ed

p = 1

p = 2

p = 3

p = 4

p = 5

Model-Based

Theory says p = O(1) works, numerics say take p →∼ 1. Why might this be true?

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 24



Outline

1. Introduction to derivative-free optimisation (DFO)

2. Subspace DFO methods

3. Average-case analysis

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 25



Average-Case Analysis

Almost all analysis of optimisation algorithms is worst-case: e.g. “for all objectives f in a

given class, get ∥∇f (xk)∥2 ≤ ϵ after at most k = O(ϵ−2) iterations”.

Does this capture realistic behaviour?

� Not for linear programming! Simplex method takes exponentially many iterations

(worst-case) but on average is polynomial time [Spielman & Teng, 2004]

� Gradient descent-type methods designed for (convex) average-case Hessian spectra

can outperform “worst-case optimal” methods [Pedregosa & Scieur, 2020]

� For nonconvex optimisation, can do worst-case analysis in different regions of the

domain separately [Curtis & Robinson, 2021]

New here: average-case analysis for nonconvex optimisation algorithms.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 26



Average-Case Analysis

Almost all analysis of optimisation algorithms is worst-case: e.g. “for all objectives f in a

given class, get ∥∇f (xk)∥2 ≤ ϵ after at most k = O(ϵ−2) iterations”.

Does this capture realistic behaviour?

� Not for linear programming! Simplex method takes exponentially many iterations

(worst-case) but on average is polynomial time [Spielman & Teng, 2004]

� Gradient descent-type methods designed for (convex) average-case Hessian spectra

can outperform “worst-case optimal” methods [Pedregosa & Scieur, 2020]

� For nonconvex optimisation, can do worst-case analysis in different regions of the

domain separately [Curtis & Robinson, 2021]

New here: average-case analysis for nonconvex optimisation algorithms.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 26



Average-Case Analysis

What is a tractable model to analyse these algorithms?

� Pick random linear function f (x) = vTx

� At xk , pick a random p-dimensional subspace

� Do 1 iteration of subspace method in dimension p

– Direct search with Dk = {±e1, . . . ,±ep} or model-based with linear interpolation

� Look at expected decrease as function of relevant dimensions

E(p, n) := E[f (xk)− f (xk+1)]

with expectation over uniformly distributed objective functions (unit vectors v) and

subspaces (Stiefel manifold).

Assumes f is linear, or ∆k ≪ 1, i.e. close to a solution.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 27



Average-Case Analysis

What is a tractable model to analyse these algorithms?

� Pick random linear function f (x) = vTx

� At xk , pick a random p-dimensional subspace

� Do 1 iteration of subspace method in dimension p

– Direct search with Dk = {±e1, . . . ,±ep} or model-based with linear interpolation

� Look at expected decrease as function of relevant dimensions

E(p, n) := E[f (xk)− f (xk+1)]

with expectation over uniformly distributed objective functions (unit vectors v) and

subspaces (Stiefel manifold).

Assumes f is linear, or ∆k ≪ 1, i.e. close to a solution.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 27



Average-Case Analysis

What is a tractable model to analyse these algorithms?

� Pick random linear function f (x) = vTx

� At xk , pick a random p-dimensional subspace

� Do 1 iteration of subspace method in dimension p

– Direct search with Dk = {±e1, . . . ,±ep} or model-based with linear interpolation

� Look at expected decrease as function of relevant dimensions

E(p, n) := E[f (xk)− f (xk+1)]

with expectation over uniformly distributed objective functions (unit vectors v) and

subspaces (Stiefel manifold).

Assumes f is linear, or ∆k ≪ 1, i.e. close to a solution.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 27



Average-Case Analysis: Direct Search

Calculating expected decrease leads to an interesting problem:

Lemma

For direct search, E(p, n) = Eg∼Sn−1 [max(|g1|, . . . , |gp|)]

i.e. for a randomly distributed unit vector g ∈ Rn, ∥g∥2 = 1, what is the expected

∞-norm of its first p coordinates?

Theorem (Hare, LR & Royer, 2023)

For direct search,

E(p, n) =
p2p−1

πp/2
·
Γ
(
n
2

)
Γ
(
p+1
2

)
Γ
(
n+1
2

) · I(p)

where I(p) is a (nasty) (p − 1)-dimensional integral.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 28



Average-Case Analysis: Direct Search

Calculating expected decrease leads to an interesting problem:

Lemma

For direct search, E(p, n) = Eg∼Sn−1 [max(|g1|, . . . , |gp|)]

i.e. for a randomly distributed unit vector g ∈ Rn, ∥g∥2 = 1, what is the expected

∞-norm of its first p coordinates?

Theorem (Hare, LR & Royer, 2023)

For direct search,

E(p, n) =
p2p−1

πp/2
·
Γ
(
n
2

)
Γ
(
p+1
2

)
Γ
(
n+1
2

) · I(p)

where I(p) is a (nasty) (p − 1)-dimensional integral.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 28



Nasty Integral

I(p) =
∫
R

p−1∏
j=1

sinj(φj)

 dφp−1 · · · dφ1

where

R =

(φ1, . . . , φp−1) ∈
[π
4
,
π

2

]
×

p−1∏
j=2

[
arctan

(
j−1∏
k=1

1

sin(φk)

)
,
π

2

]

p I(p) Approx.

1 1 1.0000

2 1/
√
2 0.7071

3
(
4 arctan(

√
2) + arctan(460

√
2/329)

)
/(8
√
2) 0.4352

4 arctan(1/(2
√
2))/
√
2 0.2403

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 29



Nasty Integral

I(p) =
∫
R

p−1∏
j=1

sinj(φj)

 dφp−1 · · · dφ1

where

R =

(φ1, . . . , φp−1) ∈
[π
4
,
π

2

]
×

p−1∏
j=2

[
arctan

(
j−1∏
k=1

1

sin(φk)

)
,
π

2

]
p I(p) Approx.

1 1 1.0000

2 1/
√
2 0.7071

3
(
4 arctan(

√
2) + arctan(460

√
2/329)

)
/(8
√
2) 0.4352

4 arctan(1/(2
√
2))/
√
2 0.2403

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 29



Average-Case Analysis: Direct Search

Although I(p) is nasty, we can still get bounds on it and then look at “expected

decrease per objective evaluation”.

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation for direct search,

E(p, n)/(2p), is strictly decreasing in p for p = 1, . . . , n.

So, the smallest subspace dimension p = 1 gives the best ‘bang for your buck’.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 30



Average-Case Analysis: Direct Search

Although I(p) is nasty, we can still get bounds on it and then look at “expected

decrease per objective evaluation”.

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation for direct search,

E(p, n)/(2p), is strictly decreasing in p for p = 1, . . . , n.

So, the smallest subspace dimension p = 1 gives the best ‘bang for your buck’.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 30



Average-Case Analysis: Direct Search

Although I(p) is nasty, we can still get bounds on it and then look at “expected

decrease per objective evaluation”.

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation for direct search,

E(p, n)/(2p), is strictly decreasing in p for p = 1, . . . , n.

So, the smallest subspace dimension p = 1 gives the best ‘bang for your buck’.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 30



Average-Case Analysis: Model-Based

For model-based methods, look at expected 2-norm of first p components of random

unit vector (much nicer than ∞-norm) to get a similar result:

E(p, n) = Eg∼Sn−1

[√
g2
1 + · · ·+ g2

p

]
=

Γ
(
n
2

)
· Γ
(
p+1
2

)
Γ
(
n+1
2

)
· Γ
(p
2

) ≈
√
p
√
n

for p, n large

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(p + 1), satisfies

E(2, n)
3

>

[
E(1, n)

2
=

E(3, n)
4

]
>

E(4, n)
5

> · · · > E(n, n)
n + 1

So E(p, n)/(p + 1) is strictly decreasing in p for p ≥ 2, not p ≥ 1.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 31



Average-Case Analysis: Model-Based

For model-based methods, look at expected 2-norm of first p components of random

unit vector (much nicer than ∞-norm) to get a similar result:

E(p, n) = Eg∼Sn−1

[√
g2
1 + · · ·+ g2

p

]
=

Γ
(
n
2

)
· Γ
(
p+1
2

)
Γ
(
n+1
2

)
· Γ
(p
2

) ≈
√
p
√
n

for p, n large

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(p + 1), satisfies

E(2, n)
3

>

[
E(1, n)

2
=

E(3, n)
4

]
>

E(4, n)
5

> · · · > E(n, n)
n + 1

So E(p, n)/(p + 1) is strictly decreasing in p for p ≥ 2, not p ≥ 1.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 31



Average-Case Analysis: Model-Based

For model-based methods, look at expected 2-norm of first p components of random

unit vector (much nicer than ∞-norm) to get a similar result:

E(p, n) = Eg∼Sn−1

[√
g2
1 + · · ·+ g2

p

]
=

Γ
(
n
2

)
· Γ
(
p+1
2

)
Γ
(
n+1
2

)
· Γ
(p
2

) ≈
√
p
√
n

for p, n large

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(p + 1), satisfies

E(2, n)
3

>

[
E(1, n)

2
=

E(3, n)
4

]
>

E(4, n)
5

> · · · > E(n, n)
n + 1

So E(p, n)/(p + 1) is strictly decreasing in p for p ≥ 2, not p ≥ 1.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 31



Conclusions & Future Work

Conclusions

� DFO useful for optimising complex/expensive functions

� Randomised projections can be effective for dimensionality reduction

� Large-scale DFO is possible using random subspaces

Future Work

� Second-order worst-case complexity analysis

� Efficient implementation of subspace quadratic models (model-based)

� Average-case analysis for quadratic objectives

� Impact of noisy objective evaluations

� Impact of low effective dimensionality

� Constrained problems?

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 32



Conclusions & Future Work

Conclusions

� DFO useful for optimising complex/expensive functions

� Randomised projections can be effective for dimensionality reduction

� Large-scale DFO is possible using random subspaces

Future Work

� Second-order worst-case complexity analysis

� Efficient implementation of subspace quadratic models (model-based)

� Average-case analysis for quadratic objectives

� Impact of noisy objective evaluations

� Impact of low effective dimensionality

� Constrained problems?

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 32



References i

M. Alzantot, Y. Sharma, S. Chakraborty, H. Zhang, C.-J. Hsieh, and M. B. Srivastava, GenAttack:

Practical black-box attacks with gradient-free optimization, in Proceedings of the Genetic and Evolutionary

Computation Conference, Prague, Czech Republic, 2019, ACM, pp. 1111–1119.

A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg, A theoretical and empirical comparison of

gradient approximations in derivative-free optimization, Foundations of Computational Mathematics, 22 (2022),

pp. 507–560.

C. Cartis, N. I. M. Gould, and P. L. Toint, On the complexity of steepest descent, Newton’s and

regularized Newton’s methods for nonconvex unconstrained optimization problems, SIAM Journal on

Optimization, 20 (2010), pp. 2833–2852.

C. Cartis and L. Roberts, Scalable subspace methods for derivative-free nonlinear least-squares optimization,

Mathematical Programming, 199 (2023), pp. 461—524.

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, vol. 8 of

MPS-SIAM Series on Optimization, MPS/SIAM, Philadelphia, 2009.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 33



References ii

F. E. Curtis and D. P. Robinson, Regional complexity analysis of algorithms for nonconvex smooth

optimization, Mathematical Programming, 187 (2021), pp. 579–615.

R. Garmanjani, D. Júdice, and L. N. Vicente, Trust-region methods without using derivatives: Worst case

complexity and the nonsmooth case, SIAM Journal on Optimization, 26 (2016), pp. 1987–2011.

S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochastic programming,

SIAM Journal on Optimization, 23 (2013), pp. 2341–2368.

I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial examples, in 3rd

International Conference on Learning Representations ICLR, San Diego, 2015.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Direct search based on probabilistic descent,

SIAM Journal on Optimization, 25 (2015), pp. 1515–1541.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Complexity and global rates of trust-region

methods based on probabilistic models, IMA Journal of Numerical Analysis, 38 (2017), pp. 1579–1597.

W. Hare, L. Roberts, and C. W. Royer, Expected decrease for derivative-free algorithms using random

subspaces, Mathematics of Computation, (2024).

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 34



References iii

W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in

Contemporary Mathematics, R. Beals, A. Beck, A. Bellow, and A. Hajian, eds., vol. 26, American Mathematical

Society, Providence, Rhode Island, 1984, pp. 189–206.

T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives on some

classical and modern methods, SIAM Review, 45 (2003), pp. 385–482.

S. Malladi, T. Gao, E. Nichani, A. Damian, J. D. Lee, D. Chen, and S. Arora, Fine-tuning language

models with just forward passes, arXiv preprint arXiv:2305.17333, (2023).

Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions, Foundations of

Computational Mathematics, 17 (2017), pp. 527–566.

F. Pedregosa and D. Scieur, Average-case acceleration through spectral density estimation, Proceedings of

the 37th International Conference on Machine Learning, (2020).

M. J. D. Powell, On trust region methods for unconstrained minimization without derivatives, Mathematical

Programming, 97 (2003), pp. 605–623.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 35



References iv

L. Roberts and C. W. Royer, Direct search based on probabilistic descent in reduced spaces, SIAM Journal

on Optimization, 33 (2023), pp. 3057–3082.

S. Shan, W. Ding, J. Passananti, H. Zheng, and B. Y. Zhao, Prompt-specific poisoning attacks on

text-to-image generative models, arXiv preprint arXiv:2310.13828, (2023).

D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes

polynomial time, Journal of the ACM, 51 (2004), pp. 385–463.

S. F. B. Tett, J. M. Gregory, N. Freychet, C. Cartis, M. J. Mineter, and L. Roberts, Does model

calibration reduce uncertainty in climate projections?, Journal of Climate, 35 (2022), pp. 2585–2602.

L. N. Vicente, Worst case complexity of direct search, EURO Journal on Computational Optimization, 1

(2013), pp. 143–153.

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 36


