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Further Reading

This talk is based on:

� C. Cartis & L. Roberts, Scalable subspace methods for derivative-free nonlinear

least-squares optimization, Math. Prog., 2023.

� L. Roberts & C. W. Royer, Direct search based on probabilistic descent in reduced

spaces, SIAM J. Optim., to appear.

Our software packages are:

� DFBGN for nonlinear least-squares:

https://github.com/numericalalgorithmsgroup/dfbgn

� directsearch for general problems:

https://github.com/lindonroberts/directsearch
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Nonlinear Optimization

Interested in unconstrained nonlinear optimization

min
x∈Rn

f (x),

where the objective function f : Rn → R is smooth.

� f is possibly nonconvex and/or ‘black-box’

– In practice, allow inaccurate evaluations of f , e.g. noise, outcome of iterative process

� Seek local minimizer (actually, approximate stationary point: ∥∇f (x)∥2 ≤ ϵ)

Lots of high-quality algorithms available:

� Linesearch, xk+1 = xk − αkH
−1
k ∇f (xk) (e.g. GD, Newton, BFGS)

� Trust-region methods (adapt well to derivative-free setting)

� Others: cubic regularization, nonlinear CG, ...
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Basic trust-region method

� Approximate f near xk with a local quadratic (Taylor) model

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)
T s +

1

2
sT∇2f (xk)s

� Get step by minimizing model in a neighborhood

sk = argmin
s∈Rn

mk(s) subject to ∥s∥2 ≤ ∆k

� Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)

State-of-the-art algorithm with theoretical guarantees (e.g. limk→∞ ∥∇f (xk)∥2 = 0).

[Conn, Gould & Toint, 2000]
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Derivative-Free Optimization

xk+1 = xk − [∇2f (xk)]
−1∇f (xk)

mk(s) = f (xk) +∇f (xk)
T s +

1

2
sT∇2f (xk)s

� How to calculate derivatives of f in practice?
– Write code by hand

– Finite differences

– Algorithmic differentiation/backpropagation

� Difficulties when function evaluation is
– Black-box

– Noisy

– Computationally expensive

� Alternative — derivative-free optimization (DFO)
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Applications

Application 1: Climate Modelling [Tett et al., 2022]

� Parameter calibration for global climate models

� One model run = simulate global climate for 5 years (expensive!)

� Very complicated, chaotic physics (black-box & noisy!)
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Applications

Application 2: Adversarial Example Generation [Alzantot et al., 2019]

� Find perturbations of neural network inputs which are misclassified

� Neural network structure assumed to be unknown (black-box!)

� Want to test very few examples (≈ expensive!)

Image from [Goodfellow et al., 2015]
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Model-Based DFO

DFO Method 1: Model-Based DFO

� Using trust-region framework, build a model

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points — find gk , Hk such that

mk(y − xk) = f (y), ∀y ∈ Y

For convergence, need mk to be fully linear:

|f (xk + s)−mk(s)| ≤ O(∆2
k) and ∥∇f (xk + s)−∇mk(s)∥2 ≤ O(∆k)

Achievable if points in Y are well-spaced (in a specific sense).

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Example: Model-Based DFO

1. Choose interpolation set
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Example: Model-Based DFO

2. Interpolate & minimize...
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Example: Model-Based DFO

3. Add new point to interpolation set (replace a bad point)
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Example: Model-Based DFO

4. Repeat with new interpolation set & model
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Direct Search DFO

DFO Method 2: Direct Search

� Given xk and ∆k , choose a set Dk ⊂ Rn of m vectors
� If there exists d k ∈ Dk with f (xk +∆kd k) < f (xk)− 1

2∆
2
k∥d k∥22:

– Set xk+1 = xk +∆kd k and increase ∆k

� Otherwise, set xk+1 = xk and decrease ∆k

For convergence, need Dk to be κ-descent:

max
d∈Dk

−dT∇f (xk)

∥d∥2 · ∥∇f (xk)∥2
≥ κ ∈ (0, 1]

i.e. there is a vector d making an acute angle with −∇f (xk) (descent direction).

Examples: {±e1, . . . ,±en} with κ = 1/
√
n or {e1, . . . , en,−e} with κ ∼ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]
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Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]
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Complexity Theory

Analyze methods using worst-case complexity: how long before ∥∇f (xk)∥2 ≤ ϵ?

Metric Deriv-based Model-based Direct search

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n3ϵ−2) O(n2ϵ−2)

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016; Vicente, 2013]

� Same ϵ dependency as derivative-based, but scales badly with problem dimension n

� Model-based DFO also has substantial linear algebra work for interpolation and

geometry management: at least O(n3) flops per iteration

Challenge

How can DFO methods be made scalable?
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Scalable DFO

Challenge

How can DFO methods be made scalable?

� Exploit known problem structure [Porcelli & Toint, 2020; Bandeira et al., 2012]

� Randomized finite differencing (‘gradient sampling’) [Nesterov & Spokoiny, 2017]

Applications for scalable DFO methods include:

� Machine learning [Salimans et al., 2017; Ughi et al., 2020]

� Image analysis [Ehrhardt & R., 2021]

� Proxy for global optimization methods [Cartis, R. & Sheridan-Methven, 2021]
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Randomized DFO

Challenge

How can DFO methods be made scalable?

Randomization is a promising approach:

� Make model fully linear with probability < 1 [Gratton et al., 2017]

� Make search directions κ-descent with probability < 1 [Gratton et al., 2015]

Problem: Improves complexity for direct search, but not for model-based!

Why? Direct search formulation effectively allows dimensionality reduction (sample ≪ n

directions).

Goal

Use dimensionality reduction techniques suitable for both DFO classes.

Subspace DFO Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 15



Randomized DFO

Challenge

How can DFO methods be made scalable?

Randomization is a promising approach:

� Make model fully linear with probability < 1 [Gratton et al., 2017]

� Make search directions κ-descent with probability < 1 [Gratton et al., 2015]

Problem: Improves complexity for direct search, but not for model-based!

Why? Direct search formulation effectively allows dimensionality reduction (sample ≪ n

directions).

Goal

Use dimensionality reduction techniques suitable for both DFO classes.

Subspace DFO Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 15



Randomization for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose X is a set of N points in Rd and ϵ ∈ (0, 1). Let A ∈ Rp×d be a matrix with

i.i.d. N(0, p−2) entries and p ∼ log(N)/ϵ. Then with high probability,

(1− ϵ)∥x − y∥2 ≤ ∥Ax − Ay∥2 ≤ (1 + ϵ)∥x − y∥2, ∀x , y ∈ X .

� Random projections approximately preserve distances (& inner products, norms, ...)

� Reduced dimension p depends only on # of points N, not the ambient dimension d !

� Other random constructions satisfy J-L Lemma (Haar subsampling, hashing, ...)
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Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of Rn

� Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]

� Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]

� Build on recent derivative-based analysis [Cartis, Fowkes & Shao, 2020]

Subspace DFO framework:

� Generate subspace of dimension p ≪ n given by col(Pk) for random Pk ∈ Rn×p

� Model-based: build a low-dimensional model m̂k(ŝ) which is fully linear for

f̂ (ŝ) := f (xk + Pk ŝ) : Rp → R
� Direct search: choose Dk ⊂ Rp which is κ-descent for PT

k ∇f (xk) ∈ Rp

Fewer interpolation/sample points needed, cheap linear algebra (everything in Rp)
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Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

∥PT
k ∇f (xk)∥2 ≥ α∥∇f (xk)∥2, for some α > 0.

i.e. if there is still work to do, then we know this by only inspecting f in the subspace.

Key Assumption

The subspace Pk is well-aligned with probability 1− δ.

Using J-L lemma, choose p ∼ (1− α)−2| log δ| = O(1) independent of n.
Note: if randomly select p coordinates (block coordinate descent), need p ∼ αn.
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Subspace DFO — Complexity

Theorem (Cartis & R., 2023; R. & Royer, 2023)

If f is sufficiently smooth and bounded below and ϵ sufficiently small, then

P
[
Kϵ ≤ C (p, α, δ)ϵ−2

]
≥ 1− e−c(p,α,δ)ϵ−2

,

where Kϵ is the first iteration with ∥∇f (xk)∥2 ≤ ϵ.

� Implies E [Kϵ] = O(ϵ−2) and almost-sure convergence

� O(p) evaluations per iteration, so same bounds for evaluation complexity
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Subspace DFO — Complexity

Standard methods:

Metric Deriv-based Model-based Direct search

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n3ϵ−2) O(n2ϵ−2)

Model-based DFO has O(n3) linear algebra work per iteration.

Using random subspaces:

Metric Deriv-based Model-based Direct search

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n2ϵ−2) O(nϵ−2)

Model-based DFO has O(n) linear algebra work per iteration.
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Software Packages

Open-source Python packages available on Github

Model-Based

DFBGN for nonlinear least-squares (numerical algorithms group/dfbgn)

min
x∈Rn

1

2
∥r(x)∥22 =

1

2

m∑
i=1

ri (x)
2

Subspace method with several heuristics to improve performance

Direct Search

directsearch (lindonroberts/directsearch)

Many varieties of direct search methods (classical, random, subspaces) with multiple

Dk generation methods.
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Numerical Results — DFBGN

DFBGN vs. DFO-LS (low accuracy τ = 10−1) [% problems solved vs. # evals]
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DFBGN is more suitable for low accuracy solutions, performance improves with larger p

(except for timeouts!)
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Numerical Results — Direct Search

Direct search comparisons (low accuracy τ = 10−1) [% problems solved vs. # evals]
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Large problems n ≈ 1000

Subspace methods match randomized methods and outperform classical methods,

performance best with small p
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Numerical Results — low budget

Subspace methods progress after p ≪ n evaluations (important when n large)
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Conclusions & Future Work

Conclusions

� Scalability of model-based DFO is currently limited (in theory & practice)

� Randomized projections are effective for dimensionality reduction

� New algorithms reduce linear algebra cost and iteration complexity

� Practical implementations available

Future Work

� Second-order complexity analysis

� Efficient implementation of subspace quadratic models (model-based)

� Problems with constraints

� Comparison of different choices of p:

– New work (∼ 3 weeks ago!) studying this [Hare, R. & Royer, 2023]
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