Inexact Derivative-Free Optimisation for Bilevel Learning

Joint work with Matthias Ehrhardt (Bath)

Lindon Roberts, ANU (lindon.roberts@anu.edu.au)

Computational Techniques & Applications Conference, UNSW 31 August 2020

- 1. Bilevel Learning for Variational Regularisation
- 2. Inexact Derivative-Free Optimisation
- 3. Numerical Results

Variational Regularisation

Many inverse problems can be posed in the form

```
\min_{x} \mathcal{D}(Ax, y) + \alpha \mathcal{R}(x),
```

where

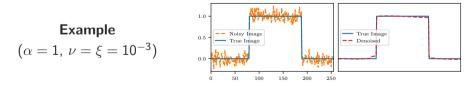
- x is the quantity we wish to find;
- y is some observed data: $y \approx Ax$ (usually with noise);
- $\mathcal{D}(\cdot, \cdot)$ measures data fidelity
- $\mathcal{R}(\cdot)$ is a regulariser (what types of solutions x do we prefer?);
- $\alpha > 0$ is a parameter.

Without a regulariser, inverse problems are typically ill-posed.

Given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

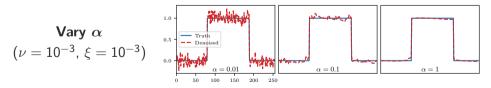
- Smooth and strongly convex optimisation problem
 - Iterative methods converge linearly (e.g. gradient descent, FISTA)
- Solution depends on choices of α , ν and ξ :



Given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

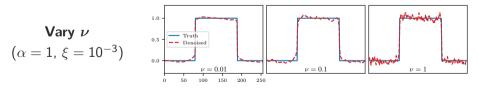
- Smooth and strongly convex optimisation problem
 - Iterative methods converge linearly (e.g. gradient descent, FISTA)
- Solution depends on choices of α , ν and ξ :



Given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

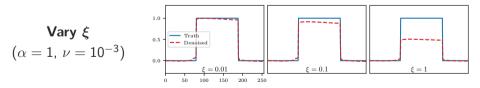
- Smooth and strongly convex optimisation problem
 - Iterative methods converge linearly (e.g. gradient descent, FISTA)
- Solution depends on choices of α , ν and ξ :



Given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

- Smooth and strongly convex optimisation problem
 - Iterative methods converge linearly (e.g. gradient descent, FISTA)
- Solution depends on choices of α , ν and ξ :



Solution depends on problem parameters (e.g. α , u and ξ)

Question

How to choose good problem parameters?

Solution depends on problem parameters (e.g. α , u and ξ)

Question

How to choose good problem parameters?

- Trial & error
- L-curve criterion
- Bilevel Learning learn from data

Suppose we have training data $(x_1, y_1), \ldots, (x_n, y_n)$ — ground truth and noisy observations.

Attempt to recover x_i from y_i by solving inverse problem with parameters $\theta \in \mathbb{R}^m$:

$$\hat{x}_i(\theta) := \operatorname*{arg\,min}_x \Phi_i(x, \theta), \quad \text{e.g. } \Phi_i(x, \theta) = \mathcal{D}(Ax, y_i) + \theta \mathcal{R}(x).$$

Try to find θ by making $\hat{x}_i(\theta)$ close to x_i

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \|\hat{x}_i(\theta) - x_i\|^2 + \mathcal{J}(\theta),$$

with optional (smooth) term $\mathcal{J}(\theta)$ to encourage particular θ (e.g. sparsity).

The bilevel learning problem is:

$$\begin{split} \min_{\theta} \quad f(\theta) &:= \frac{1}{n} \sum_{i=1}^{n} \|\hat{x}_i(\theta) - x_i\|^2 + \mathcal{J}(\theta), \\ \text{s.t.} \quad \hat{x}_i(\theta) &:= \argmin_{x} \Phi_i(x, \theta), \quad \forall i = 1, \dots, n. \end{split}$$

- If Φ_i are strongly convex in x and sufficiently smooth in x and θ, then x̂_i(θ) is well-defined and continuously differentiable.
- Upper-level problem $(\min_{\theta} f(\theta))$ is a smooth nonconvex optimisation problem

Problem

Convergent algorithms require exact derivatives of $f(\theta)$, but not available (cannot even compute $\hat{x}_i(\theta)$ exactly)! [e.g. Kunisch & Pock (2013), Sherry et al. (2019)]

Bilevel Optimisation with DFO

Problem

Convergent algorithms require exact derivatives of $f(\theta)$, but not available (cannot even compute $\hat{x}_i(\theta)$ exactly)!

Solution:

- Use algorithms which assume f(θ) is smooth, but do not require exact evaluations of f(θ)
- Don't compute (approximate) gradients of f at all: slow in practice

Bilevel Optimisation with DFO

Problem

Convergent algorithms require exact derivatives of $f(\theta)$, but not available (cannot even compute $\hat{x}_i(\theta)$ exactly)!

Solution:

- Use algorithms which assume f(θ) is smooth, but do not require exact evaluations of f(θ)
- Don't compute (approximate) gradients of f at all: slow in practice
- Use derivative-free optimisation (DFO)
- Useful for objectives which are inexact/noisy or expensive to evaluate

Several types of DFO, focus on model-based DFO (mimics classical methods): $\min_{\theta} f(\theta)$

For k = 0, 1, 2, ...

- 1. Sample f in a neighbourhood of θ_k reuse existing evaluations where possible
- 2. Build an interpolating function (local model) $m_k(\theta) \approx f(\theta)$, accurate for $\theta \approx \theta_k$
- 3. Minimise m_k in a neighbourhood of θ_k to get θ_{k+1}

(commonly based on trust-region methods)

Theorem (Conn, Scheinberg & Vicente)

If interpolation points are close to θ_k and "well-spaced", then interpolating model is as good approximation to f as a Taylor series (up to a constant factor).

How to adapt to bilevel learning?

How to adapt to bilevel learning?

Theorem (Ehrhardt & R., extension of Conn & Vicente (2012))

If interpolation points are close to θ_k and "well-spaced", and computed minima of $\Phi_i(x_i, \theta)$ are sufficiently close to $\hat{x}_i(\theta)$, then interpolating model is as good approximation to f as a Taylor series (up to a constant factor).

- Allow inexact minimisation of Φ_i early, only ask for high accuracy when needed
- Exploit sum-of-squares structure of f to improve performance [Cartis & R. (2019)]

Algorithm converges with inexact evaluations of $\hat{x}_i(\theta)$:

Theorem (Ehrhardt & R.)

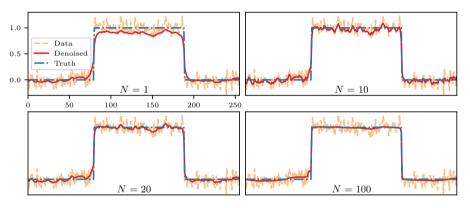
If f is sufficiently smooth and bounded below, then:

- The inexact bilevel DFO algorithm produces a sequence θ_k such that ||∇f(θ_k)|| < ε after at most k = O(ε⁻²) iterations. That is, lim inf_{k→∞} ||∇f(θ_k)|| = 0.
- All evaluations of *x̂_i*(θ) together require at most O(ε⁻²|log ε|) iterations (of gradient descent, FISTA, etc.)

Iteration bound matches known results for model-based DFO and standard trust-region methods.

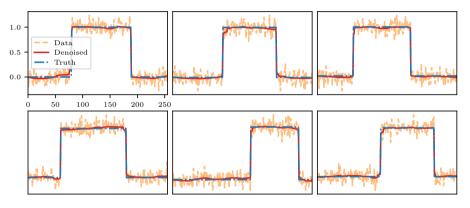
- Implement inexact algorithm in DFO-LS (state-of-the-art DFO software)
 - Github: numerical algorithms group/dfols
- Use gradient descent & FISTA to calculate $\hat{x}_i(\theta) = \min_x \Phi_i(x, \theta)$
 - Using known Lipschitz and strong convexity constants (depending on θ)
 - Allow arbitrary accuracy in $\hat{x}_i(\theta)$: terminate when $\|\nabla_x \Phi\|$ sufficiently small
 - A priori linear convergence bounds too conservative in practice
- Compare to regular DFO-LS with "fixed accuracy" lower-level solutions (constant # iterations of GD/FISTA)
 - In practice, have to guess appropriate # iterations
- Measure decrease in $f(\theta)$ as function of total GD/FISTA iterations

With more evaluations of $f(\theta)$, the parameter choices give better reconstructions:



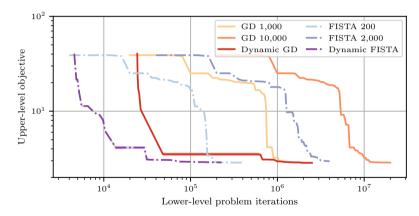
Reconstruction of x_1 after *N* evaluations of $f(\theta)$

Final learned parameters give good reconstructions of all training data:



Final reconstruction of x_1, \ldots, x_6 after 100 evaluations of $f(\theta)$

Dynamic accuracy is faster than "fixed accuracy" (at least 10x speedup):

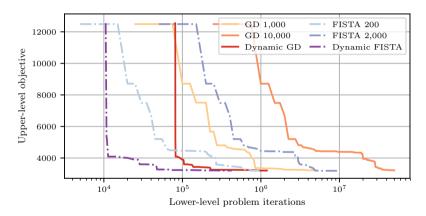


Objective value $f(\theta)$ vs. computational effort

2D denoising — final learned parameters give good reconstructions...

Final reconstruction of x_1, \ldots, x_6 after 100 evaluations of $f(\theta)$

2D denoising — ... and dynamic accuracy is still 10x faster than fixed accuracy:



Objective value $f(\theta)$ vs. computational effort

MRIs measure a subset of Fourier coefficients of an image: reconstruct using

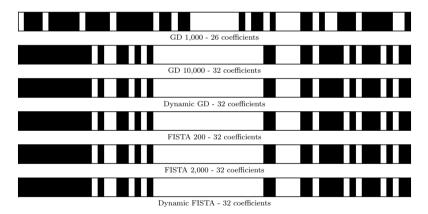
$$\min_{x} \frac{1}{2} \|\mathcal{F}(x) - y\|_{S}^{2} + \mathcal{R}(x)$$

where $\|v\|_{S}^{2} := v^{T}Sv$ and sampling pattern $S = \text{diag}(s_{1}, \ldots, s_{d})$ for $s_{j} \in [0, 1]$.

- Use same smoothed TV regulariser $\mathcal{R}(x)$ (with fixed α , ν and ξ)
- Learn s_1, \ldots, s_d , with parametrisation $s_j(\theta) := \theta_j/(1-\theta_j)$ [Chen et al. (2014)]
- Measuring each coefficient takes time, so target sparsity: use $\mathcal{J}(\theta) = \|\theta\|_1$.

Learning MRI Sampling Patterns

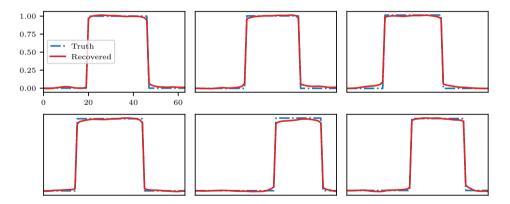
All variants learn 50% sparse sampling patterns:



Learned sampling patterns (white = active)

Learning MRI Sampling Patterns

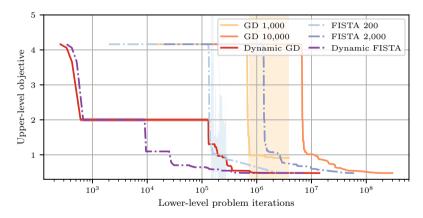
Learned sampling patterns give good reconstructions:



Final reconstruction of x_1, \ldots, x_6 after 3000 evaluations of $f(\theta)$

Learning MRI Sampling Patterns

... and dynamic accuracy is still substantially faster than fixed accuracy:



Objective value $f(\theta)$ vs. computational effort

Conclusion & Future Work

Conclusions

- Bilevel learning can be used to determine good parameters for inverse problems
- Inexact DFO method gives convergence guarantees with inexact evaluations
 - Practical & theoretical algorithms match, don't guess fixed # GD/FISTA iterations
- Tested on 1D and 2D denoising, learning MRI sampling patterns
- Using dynamic accuracy dramatically reduces computational requirements

See arXiv:2006.12674 for details.

Future work:

- Subsampling algorithms (à la stochastic gradient descent)
- Extend to nonsmooth problems and regularisers $\mathcal{J}(\theta)$
- Learn 2D MRI sampling patterns

References i

Coralia Cartis, Jan Fiala, Benjamin Marteau, and Lindon Roberts.
Improving the flexibility and robustness of model-based derivative-free optimization solvers.

ACM Transactions on Mathematical Software, 45(3):32:1–32:41, 2019.

Coralia Cartis and Lindon Roberts.

A derivative-free Gauss-Newton method.

Mathematical Programming Computation, 11(4):631–674, 2019.

Yunjin Chen, René Ranftl, Thomas Brox, and Thomas Pock.
 A bi-level view of inpainting-based image compression.
 In 19th Computer Vision Winter Workshop, 2014.

References ii

Andrew R. Conn, Katya Scheinberg, and Luís N. Vicente. Introduction to Derivative-Free Optimization, volume 8 of MPS-SIAM Series on Optimization.

MPS/SIAM, Philadelphia, 2009.

Andrew R. Conn and Luís N. Vicente.
Bilevel derivative-free optimization and its application to robust optimization.

Optimization Methods and Software, 27(3):561–577, 2012.

 Matthias J. Ehrhardt and Lindon Roberts.
 Inexact derivative free optimization for bi-level learning. arXiv preprint arXiv:2006.12674, 2020.

Karl Kunisch and Thomas Pock.

A bilevel optimization approach for parameter learning in variational models.

SIAM Journal on Imaging Sciences, 6(2):938–983, 2013.

 Ferdia Sherry, Martin Benning, Juan Carlos De los Reyes, Martin J. Graves, Georg Maierhofer, Guy Williams, Carola-Bibiane Schönlieb, and Matthias J. Ehrhardt.
 Learning the sampling pattern for MRI.

arXiv preprint arXiv:1906.08754, 2019.