
Derivative-Free Optimisation
for Data Fitting

Lindon Roberts
University of Oxford

Supervisors: Coralia Cartis, Jan Fiala, Benjamin Marteau

A technical report for
InFoMM CDT Mini-Project 1

in partnership with
Numerical Algorithms Group (NAG)

Trinity 2016

Contents
1 Introduction 3

2 Methods for General Derivative-Free Optimisation 4
2.1 Classical Model-Based Methods . 4
2.2 Derivative-Free Model-Based Methods 5

2.2.1 Algorithm DFO-basic . 7
2.2.2 Algorithm BOBYQA . 7

2.3 Coordinate and Pattern Search Methods 8
2.4 Simplex Methods . 10

3 Least-Squares Minimisation 10
3.1 Gauss-Newton Method . 10
3.2 Levenberg-Marquardt Method . 11

4 Derivative-Free Methods for Least-Squares Problems 12

5 Description of Testing Methodology 13
5.1 Solvers Compared . 14
5.2 Problem Set . 15
5.3 Measuring Convergence . 16

6 Numerical Results 16
6.1 Comparison of Existing Solvers . 17
6.2 Performance of New Solver . 17

7 Future Research Directions 25
7.1 Startup Cost . 25
7.2 Performance under noise . 25
7.3 Large-scale problems . 26

8 Conclusions 27
8.1 Postscript (November 2018) . 28

References 29

2

1 Introduction
Fitting mathematical models to observational data is a crucial part of solving quanti-
tative problems in many industries and application areas. One of the most common
techniques for data fitting is least-squares minimisation. Thus data fitting gives rise
to a class of optimisation problems with specific mathematical structure. We can use
this structure to develop specialised optimisation algorithms which are more efficient
than algorithms for more general problems.

A common feature of many standard optimisation algorithms is the necessity of
having gradients (or higher derivatives) of the objective and constraints. In iterative
methods, derivatives tell us about the local structure of the problem near our current
iterate, which can inform how we choose the next iterate. There are several ways that
optimisation software may gather derivative information, such as

• Requiring an input function which calculates derivatives, which the user must
code themselves;

• Estimating derivatives with finite differences; and

• Algorithmic differentiation, where the chain rule applied to the underlying
mathematical operations within source code builds up derivative information
automatically.

However, there are situations where derivative information is not available. Common
examples are when third-party proprietary code is used (so the exact calculations and
source code are unavailable), and where the objective calculation is very expensive to
calculate, or subject to noise (making finite difference approximations either intractable
or inaccurate).

Derivative-free optimisation (DFO) algorithms are designed to handle such situa-
tions. These algorithms avoid any calculation of derivatives, explicitly or implicitly,
and as such have some fundamental differences to standard optimisation algorithms.
DFO algorithms are suited to real-world problems in algorithm parameter optimisation,
energy, weather forecasting, and engineering design, among others. Some applications
of DFO can be found in [3, Chapter 1].

In this report, we will look at derivative-free methods to solve least-squares
optimisation problems. The Numerical Algorithms Group (NAG) is interested in
incorporating such techniques into their software library, which will be useful for their
customers with data fitting problems, particularly where model evaluation is expensive
or noisy. Such problems arise, for instance, in model calibration for finance, energy
and climate.

The key outcomes of this project are:

1. The implementation in the NAG software library of a derivative-free algorithm for
least-squares problems (update Nov 2018 : see Section 8.1 for further information);

2. A comparison of existing derivative-free algorithms and their performance on
least-squares problems;

3

3. An analysis of areas where state-of-the-art DFO algorithms could be improved.

The outline of this report is as follows: in Section 2, we introduce derivative-free
optimisation for general problems, with a focus on model-based methods. To do
this, we will first consider the case where we have derivative information, which will
highlight exactly how the lack of derivatives force us to change approach. Then in
Section 3, I will introduce least-squares problems, their mathematical structure, and
common derivative-based solution methods. In Section 4, we will see how general-
purpose DFO techniques combine with the least-squares problem structure to produce
a DFO algorithm specifically designed for least-squares problems. Having introduced
a number of different algorithms, in Sections 5 and 6, we will examine a framework
for performing numerical experiments on DFO algorithms for least-squares problems,
and then see how the different algorithms perform. Lastly, as this work will continue
into a 3-year DPhil project, in Section 7 we will consider different ways the current
algorithms could be extended, paying particular attention to large scale and noisy
problems.

2 Methods for General Derivative-Free Optimisa-
tion

In this section, we consider how to construct derivative-free optimisation algorithms.
Much of the material in this section is drawn from [14, Chapter 9] and [3]. As we will
see in Section 2.1, many common optimisation techniques rely on a Taylor series-type
approximation of the objective at each step. However, when derivatives are not
available, we cannot construct a Taylor expansion; we must use other techniques.
The methods we will consider are model-based variants of trust region algorithms.
However, for completeness, we will briefly consider some common alternative classes
of DFO algorithms. All methods in this section apply to general problems, not just
least-squares minimisation. We will consider the general unconstrained minimisation
problem

min
x∈Rn

f(x), (2.1)

where f has sufficient smoothness for the relevant context.

2.1 Classical Model-Based Methods
To motivate the model-based methods for derivative-free optimisation in Section 2.2,
we will first discuss general model-based optimisation algorithms when derivatives are
available.

The basis for many methods for solving (2.1) is a Taylor series approximation of
the objective f around our current iterate xk:

f(xk + s) ≈ mk(s) = f(xk) +∇f(xk)T s + 1
2sT∇2f(xk)s. (2.2)

4

Here we think of the second-order Taylor series as a model for the value of the objective
in a neighbourhood of xk.

In Newton’s method, we try to find s minimising mk(s) by setting ∇mk = 0. This
gives us the update xk+1 = xk + αksk, where sk solves the linear system

∇2f(xk)sk = −∇f(xk), (2.3)

and αk > 0 is some step size. The value of αk is chosen to satisfy certain conditions
which allow the algorithm to converge. A common choice, used in the NAG Library
implementation [8, 11], for instance, are the Wolfe conditions:

f(xk+1) ≤ f(xk) + γαk∇f(xk)T sk (2.4)
|∇f(xk+1)T sk| ≤ η|∇f(xk)T sk|, (2.5)

where 0 < γ < η < 1 are parameters. If we are close to a local minimum, then
∇2f(xk) will be positive definite and αk = 1 satisfies (2.4) and (2.5). Thus we are
truly minimising mk, and Newton’s method converges quadratically to that local
minimum [14, Theorem 3.5]. However, in general, we cannot guarantee that ∇2f(xk)
is positive definite, or even invertible. That is, s satisfying (2.3) may not exist, or not
be a descent direction of f .

To address this, we impose a constraint on our minimisation of mk, based on
the understanding that (2.2) is only accurate for small s. Our update becomes
xk+1 = xk + sk, where

sk = arg min
s∈Rn

mk(s) subject to ‖s‖ ≤ ∆k, (2.6)

where ‖ · ‖ is the Euclidean norm (although other norms are sometimes used). The
feasible set ‖s‖ ≤ ∆k is known as the trust region, with radius ∆k, and corresponds to
the region where we trust the model (2.2) to be a good approximation to f(xk + s).

If we solve the trust region subproblem (2.6) sufficiently well – and there are
specialised algorithms that achieve this – and make sure to update ∆k at each
iteration based on how well the approximation (2.2) holds for the chosen step sk, we
can get a globally convergent algorithm. The only requirements on f are smoothness
conditions and that ∇2f(xk) are uniformly bounded for all k [14, Theorem 4.5].

2.2 Derivative-Free Model-Based Methods
As mentioned above, the main derivative-free methods we will consider in this report
are model-based. In essence, these methods maintain a set of points Yk ⊂ Rn,
typically of size O(n) or O(n2), at which f has been evaluated. We then use these
values to construct an interpolating polynomial mk, designed to approximate f in a
neighbourhood of the current iterate xk ∈ Yk. In the trust region method described in
Section 2.1, this replaces the Taylor approximation (2.2) – the other features of the
algorithm remain the same.

5

Previously, we built the model (2.2), which required first and second derivatives of
f at xk. In the derivative-free context, we instead construct the quadratic model

f(xk + s) ≈ mk(s) = f(xk) + gTk s + 1
2sTHks, (2.7)

and find gk and Hk from the interpolation conditions

mk(y− xk) = f(y), ∀y ∈ Yk. (2.8)

Note that (2.8) is automatically satisfied for y = xk because we have already set the
constant term in (2.7) to be f(xk). We can use this derivative-free model mk to solve
the trust region subproblem (2.6). This is the basic framework of the model-based
algorithms we will consider. Before we do, there are some extra complications from
(2.7) we must address.

Firstly, we need to choose an interpolation set Yk such that (2.8) is able to be
satisfied. This is possible as long as the set of points is not degenerate; i.e. does not lie
in a quadratic manifold. Also, if Yk has fewer than (n+ 1)(n+ 2)/2 points, then the
model (2.7) is underdetermined. To get a unique solution, we need to impose extra
conditions on the interpolation. A common approach is to use minimum Frobenius
norm updating; that is, solve the quadratic program

min
gk,Hk

‖Hk −Hk−1‖2
F , (2.9a)

subject to Hk symmetric, (2.9b)
mk(y− xk) = f(y), ∀y ∈ Yk. (2.9c)

As detailed in [18, 19, 20], this problem can be efficiently solved via a single linear
system of size |Yk|+ n+ 1. In the first instance, we usually take H−1 = 0.

Although it is not difficult to find a set Yk for which (2.9c) can be satisfied, we want
our interpolating model to be stable to small perturbations in the sample set (i.e. the
interpolation problem is well-conditioned), and to provide a good local approximation
to the objective. To achieve these goals, we need to control the geometry of Yk in a
more specific way.

Following [3, Chapter 5], we call a Yk ‘poised’ if there exists an interpolating model
satisfying (2.8). A suitable measure of ‘poisedness’ is given by the following.

Definition 2.1. Let Λ > 0, B ⊂ Rn, and P2
n be the space of quadratic polynomials

on Rn, with dimension q = (n + 1)(n + 2)/2. A poised set Yk = {y1, . . . ,yp} ⊂ Rn,
where n+ 1 ≤ p ≤ q is Λ-poised in B (in the minimum Frobenius norm sense) if

max
1≤i≤p

max
x∈B
|`i(x)| ≤ Λ, (2.10)

where {`1, . . . , `p} is the minimum Frobenius norm Lagrange polynomial basis for Yk
in P2

n.

The minimum Frobenius norm Lagrange polynomial basis is defined by `i(yj) = δi,j
for all i, j = 1, . . . , p, and minimising ‖∇2`i‖F over all such quadratics. Generally

6

speaking, small Λ corresponds to good geometry in the set Yk. If some point y ∈ Yk
is also in B, then Λ ≥ 1. In our algorithms, we want our set Yk to be Λ-poised in
a neighbourhood of xk. This gives us error bounds on the approximation mk(s) ≈
f(xk + s). Specifically, we have the following result [22, Lemma 3.1].

Theorem 2.2. Let B = {x : ‖x − xk‖ ≤ ∆} ⊂ Rn be the ball of radius ∆ about
xk. Suppose Yk ⊂ B is Λ-poised in the ball B, and n+ 1 ≤ |Yk| ≤ (n+ 1)(n+ 2)/2.
Suppose also that f is continuously differentiable and ∇f is Lipschitz continuous with
constant L in a neighbourhood of B. Then for any ‖s‖ ≤ ∆ we have the bounds

‖∇f(xk + s)−∇mk(s)‖ ≤ c1(‖∇2mk‖+ L)∆, and (2.11)
|f(xk + s)−mk(s)| ≤ c2(‖∇2mk‖+ L)∆2, (2.12)

where c1, c2 > 0 are constants depending only on Yk.

2.2.1 Algorithm DFO-basic

The simplest algorithm we consider is called DFO-basic, based on the algorithm
described in [2]. A full specification is given in Algorithm 1.

The most important feature of this algorithm is that it begins with an interpolation
set of size 2n+1, then allows the set to change size, up to a maximum of (n+1)(n+2)/2
points. However, it does not do any checks about the geometry of the interpolation
set. Each iteration is then a standard trust region iteration, where it uses built-in
MATLAB routines to recalculate the whole interpolated model and solve the trust
region subproblem exactly.

2.2.2 Algorithm BOBYQA

The algorithm BOBYQA [20] is intended to solve the bound-constrained problem

min
x∈Rn

f(x), subject to x− ≤ x ≤ x+. (2.13)

However, in this report we only consider unconstrained problems, so we simplify below
for the case where x± = (±∞, . . . ,±∞).

BOBYQA differs from DFO-basic in that it uses a fixed size interpolation set. The
interpolation set is allowed to be of size p, where n+2 ≤ p ≤ (n+1)(n+2)/2. When we
have a new point, we swap it with another point currently in the interpolation set. It
does, however, control the geometry of the interpolation set by ensuring Λ-poisedness
near xk. A more detailed description of BOBYQA is given in Algorithm 2, although
for a complete description the reader is referred to [20].

Note that each geometry-improving step maintains xk, but may replace the other
points. It also updates the interpolant to make sure that (2.8) still holds.

It is worth noting here that [7] concludes that, for smooth functions f , a derivative-
free method which does not control the geometry still shows ‘quite satisfactory’
performance. That is, although the geometry-improving steps are important for
proving convergence, they are perhaps not essential for practical purposes.

7

Algorithm 1 DFO-basic
Input: Objective f : Rn → R, starting point x0 ∈ Rn and trust region radius ∆ > 0.
1: Generate an interpolation set Y of size 2n+ 1 given by x0 and x0 ±∆ei for i = 1, . . . , n.
2: Evaluate f at each point in Y .
3: for k = 0, 1, 2, . . . do
4: Interpolate a quadratic model (2.7) using the data {(y, f(y) : y ∈ Y }, by solving

(2.9).
5: Solve the trust region subproblem to get a step sk.
6: Evaluate f at the trial point xk + sk.
7: If f(xk + sk) < f(xk), then set xk+1 = xk + sk [trial step accepted], otherwise set

xk+1 = xk [trial step rejected].
8: Adjust the trust region radius ∆.
9: if |Y | < (n+ 1)(n+ 2)/2 then
10: Add xk + sk to Y .
11: else if trial step accepted then
12: Replace the point in Y furthest from xk+1 = xk + sk with xk+1.
13: else
14: Replace the point in Y furthest from xk+1 = xk with xk + sk, if it is closer to xk+1.
15: end if
16: if ∆ < 10−3 and ‖sk‖ < 10−1 then
17: Remove from Y all points y such that ‖y− xk+1‖ ≥ 100∆.
18: end if
19: end for

2.3 Coordinate and Pattern Search Methods
In coordinate and pattern search methods, we aim to explore the space near our
current iterate xk in a systematic way. For coordinate search, we always take a step
along a particular coordinate direction: xk+1 = xk + αkek for some canonical basis
vector ek. We choose αk via a line search. Not all choices of ek allow convergence.
One method which does converge comes from the sequence:

(ek)∞k=1 = (e1, e2, . . . , en−1, en, en−1, . . . , e2, e1, e2, . . .) . (2.14)

Pattern search is a more general variant of coordinate search. Instead of fixing
a single direction in every iteration and performing a line search to find αk, we fix
αk and choose our step direction from a set of possible directions. Formally, suppose
we have a set of possible directions Sk ⊂ Rn. Our tentative step direction sk ∈ Sk
is chosen to make f(xk + αksk) small (although not necessarily minimal) in Sk. We
take xk+1 = xk + αksk as long as it ensures sufficient objective reduction, otherwise
we reduce αk and start again. Using

Sk = {e1, . . . , en,−e1, . . . ,−en}, (2.15)

is one choice which allows a pattern search algorithm to converge.

8

Algorithm 2 BOBYQA
Input: Objective f : Rn → R, starting point x0 ∈ Rn, trust region radius ∆ > 0 and

interpolation set size p satisfying n+ 2 ≤ p ≤ (n+ 1)(n+ 2)/2.
1: Generate an interpolation set Y of size p in a similar way to DFO-basic.
2: Evaluate f at each point in Y and build an interpolant by solving (2.9) with H−1 = 0.
3: for k = 0, 1, 2, . . . do
4: Solve the trust region subproblem to get a step sk.
5: if ‖sk‖ < ∆/2 then
6: Adjust ∆ and improve the poisedness of Y .
7: Restart the loop with xk+1 being the point in Y with minimum objective value.
8: end if
9: Choose which point y ∈ Y to replace with the new point, to get optimal geometry.
10: If rounding errors have accumulated sufficiently, improve the poisedness of Y and

restart the loop.
11: Evaluate f at new point xk + sk.
12: Adjust the trust region radius ∆.
13: if f(xk + sk) < f(xk) then
14: Set xk+1 = xk + sk.
15: else
16: Set xk+1 = xk.
17: end if
18: Replace y with xk + sk and update the interpolant by solving (2.9).
19: If the actual reduction was not large, adjust ∆ and improve the poisedness of Y .
20: end for

9

2.4 Simplex Methods
In simplex methods, we maintain a set of n+1 points in Rn which form a simplex. The
most popular variant is the Nelder-Mead method [13], although there are problems
for which it is known not to converge. In Nelder-Mead, at every iteration we modify
the simplex via one of a set of geometric transforms, typically replacing the point
with the largest objective value with another on the line between that point and the
centroid of the simplex. If none of these options provide an objective decrease, we
can alternatively perform a ‘shrinkage’ step, where we reduce the size of the simplex,
moving all the vertices towards the one with smallest objective value.

3 Least-Squares Minimisation
In this section, we introduce least-squares problems and some classical (derivative-
based) solution methods. The content in this section is primarily drawn from [14,
Chapter 10].

Least-squares problems have the form:

min
x∈Rn

f(x) := 1
2‖r(x)‖2 = 1

2

m∑
i=1

ri(x)2, (3.1)

where ri : Rn → R for 1 ≤ i ≤ m, the vector-valued function r : Rn → Rm is defined by
r(x) := (r1(x), . . . , rm(x))T , and ‖ · ‖ is the Euclidean norm. There are circumstances
where we may want to add constraints on the input x, but for now we consider the
unconstrained version.

Typically for data fitting problems we have more observations than values we
wish to calibrate; i.e. m ≥ n. A common situation is when the residuals ri are the
difference between the model output for some input data and an empirical observation,
so ri(x) = model(di; x)− yi for observations (di, yi).

If we define J(x) to be the m× n Jacobian matrix with i-th row ∇ri(x)T , we have

∇f(x) = J(x)T r(x), and (3.2)

∇2f(x) = J(x)TJ(x) +
m∑
i=1

ri(x)∇2ri(x). (3.3)

An important feature of least-squares problems is that we can approximate

∇2f(x) ≈ J(x)TJ(x), (3.4)

and so can estimate second derivatives using only first derivative information. This
approximation works well for problems which have small or approximately linear
residuals near the solution.

3.1 Gauss-Newton Method
The Gauss-Newton method is a simple algorithm for solving nonlinear least-squares
problems, which is very similar to Newton’s method. To get this method, we modify

10

(2.3) with the approximation (3.4), and instead solve the linear system

[J(xk)TJ(xk)]sk = −∇f(xk). (3.5)

Again, our iteration is xk+1 = xk + αksk for some αk > 0 satisfying (2.4) and (2.5).
The Gauss-Newton method converges to a stationary point if the Jacobians J(x) have
singular values uniformly bounded away from zero [14, Theorem 10.1]. If (3.4) holds
closely, such as when each ri is linear or close to zero, a Gauss-Newton step is exactly
a Newton step, so we get quadratic convergence. By contrast, when the approximation
error is large, we expect convergence to be approximately linear.

An important observation here is that Newton’s method corresponds to approx-
imating the full objective f with a second-order Taylor expansion around xk (2.2).
The Gauss-Newton method can be derived by linearising each residual ri separately,

ri(xk + s) ≈ ri(xk) +∇ri(xk)T s i = 1, . . . ,m, (3.6)

which corresponds to the approximate second-order expansion

f(xk + s) ≈ 1
2‖r(xk) + J(xk)s‖2. (3.7)

If each ri is linear, we can write r(x) = Jx− y, and (3.5) corresponds to the normal
equations for linear least squares problems with xk = 0.

A version of the Gauss-Newton method, which uses finite differences to estimate
gradients, is implemented in the NAG library routine E04FC. This routine is based
on [8], and uses γ = 10−4 in (2.4). The other parameter η in (2.5) is an input to the
routine, with default value η = 0.5.

3.2 Levenberg-Marquardt Method
In cases where the Jacobian is not full rank, the approximation (3.4) does not produce
a positive definite matrix, and Gauss-Newton may fail to produce a descent direction.
As in (2.6), we can move (3.7) into a trust region framework, and solve at each iteration

sk = arg min
s∈Rn

1
2‖r(xk) + J(xk)s‖2, subject to ‖s‖ ≤ ∆k. (3.8)

We then either take the step xk+1 = xk + sk, or adjust the trust region radius ∆k.
The KKT conditions for this problem say that either the solution corresponds to the
full Gauss-Newton step (3.5), or the solution to the regularised problem

[J(xk)TJ(xk) + λI]sk = −∇f(xk), (3.9)

for some λ > 0. The resulting trust region algorithm is called the Levenberg-Marquardt
method, and converges at a similar rate to the Gauss-Newton method.

11

4 Derivative-Free Methods for Least-Squares Prob-
lems

In this section, we combine the ideas from Sections 2 and 3 to form a derivative-
free algorithm specifically tailored to least-squares problems. Here we follow the
method from [22], which is an adaptation of BOBYQA. The resulting algorithm, called
DFBOLS, also handles bound constraints, but again we ignore these for this report.
That is, we are solving (3.1).

The key idea of DFBOLS is to replace a single model for the full objective f
with different models for each residual ri, in the style of (3.6). This involves larger
memory requirements (storing m different models) and processing requirements (the
interpolation problem (2.9) must be solved m times whenever Y is updated). However,
the benefit is we can create a model for the full objective f which exploits its least-
squares structure.

Formally, for each i = 1, . . . ,m, we have a model

ri(xk + s) ≈ m
(i)
k (s) = ri(xk) + (g(i)

k)T s + 1
2sTH(i)

k s, (4.1)

satisfying the interpolation conditions

m
(i)
k (y− xk) = ri(y), ∀y ∈ Yk. (4.2)

We write mk = (m(1)
k , . . . ,m

(m)
k)T as the vector of models, and we have the Jacobian

Jk = J(xk) = (g(1)
k , . . . ,g(m)

k)T . Approximating the full objective f by taking a
second-order expansion of 1

2‖mk(s)‖2, we get

f(xk + s) ≈ mf
k(s) = 1

2‖r(xk)‖2 + (gfk)T s + 1
2sTHf

k s, (4.3)

where
gfk = JTk r(xk), (4.4)

and

Hf
k = JTk Jk +

0 if ‖gfk‖ ≥ κ1,

κ3‖r(xk)‖I if ‖gfk‖ < κ1 and 1
2‖r(xk)‖2 < κ2‖gfk‖,∑m

i=1 ri(xk)H
(i)
k otherwise.

(4.5)

In [22], the suggested values of the constants κ1, κ2 and κ3 are 1, 1 and 0.01 respectively.
The three possibilities for Hf

k correspond to:

• Gauss-Newton when we are far from a stationary point;

• Levenberg-Marquardt when we are close to a stationary point with small residual;
and

• Full Newton when we are close to a stationary point with large residual.

12

When we are close to a stationary point, the Levenberg-Marquardt step regularises
the Hessian to try and maintain positive definiteness. If we suspect our problem has
nonzero residual at its minimum, however, we typically lose superlinear convergence
of these methods, so we move to a full Newton Hessian.

A description of DFBOLS is given in Algorithm 3. Aside from the formation of
the full model (4.3), it is the same as BOBYQA.

Algorithm 3 DFBOLS
Input: Residuals ri : Rn → R for i = 1, . . . ,m, starting point x0 ∈ Rn, trust region radius

∆ > 0 and interpolation set size p satisfying n+ 2 ≤ p ≤ (n+ 1)(n+ 2)/2.
1: Generate an interpolation set Y of size p in a similar way to DFO-basic.
2: Evaluate each ri at each point in Y and build m interpolating models (4.1) by solving

(2.9) with H(i)
−1 = 0 for all i.

3: for k = 0, 1, 2, . . . do
4: Form the model (4.3) for the full objective f .
5: Solve the trust region subproblem with objective (4.3) to get a step sk.
6: if ‖sk‖ < ∆/2 then
7: Adjust ∆ and improve the poisedness of Y .
8: Restart the loop with xk+1 being the point in Y with minimum objective value.
9: end if
10: Choose which point y ∈ Y to replace with the new point, to get optimal geometry.
11: If rounding errors have accumulated sufficiently, improve the poisedness of Y and

restart the loop.
12: Evaluate f at new point xk + sk.
13: Adjust the trust region radius ∆.
14: if f(xk + sk) < f(xk) then
15: Set xk+1 = xk + sk.
16: else
17: Set xk+1 = xk.
18: end if
19: Replace y with xk + sk and update the m interpolating models by solving (2.9).
20: If the actual reduction was not large, adjust ∆ and improve the poisedness of Y .
21: end for

This completes the description of the different derivative-free algorithms. We now
consider how they perform in practice.

5 Description of Testing Methodology
In this section, we consider the various aspects required to set up the numerical
experiments to compare different DFO algorithms. This includes the set of problems
and solvers tested, plus a description of how to compare derivative-free optimisation
algorithms. As in [22], the testing methodology from [10] is used.

13

5.1 Solvers Compared
We will compare the performance of a number of different algorithms:

• Gauss-Newton (see Section 3.1) using finite differences, from the NAG library rou-
tine E04FC. The line search parameter η was varied over η ∈ {0.01, 0.1, 0.5, 0.9},
but the default is η = 0.5;

• MATLAB’s built-in function fminsearch, an implementation of Nelder-Mead
(see Section 2.4);

• DFO-basic (see Section 2.2.1);

• BOBYQA (see Section 2.2.2) with interpolation set sizes n + 2, 2n + 1 and
(n+ 1)(n+ 2)/2, from the NAG library routine E04JC;

• DFBOLS (see Section 4) with interpolation set sizes n + 2, 2n + 1 and (n +
1)(n+ 2)/2;

• MATLAB’s built-in function fminunc, an implementation of BFGS which uses
finite differences;

• BFO, a state-of-the-art pattern search algorithm (see Section 2.3) from [17]; and

• SID-PSM, a state-of-the-art pattern search algorithm from [5, 4].

The NAG library version used was Mark 24.4. DFO-basic, BOBYQA and DFBOLS
all require a starting trust region radius. For BOBYQA, NAG recommends using
10% of the largest expected change in any coordinate between the starting value x0
and the solution [12]. To this end, the value 0.1 max(‖x0‖∞, 1) was used for all three
solvers. Additionally, the Gauss-Newton routine requires an estimate of the distance
between x0 and the solution; for this, ‖x0‖2 was used. In DFBOLS, the constants κ1,
κ2 and κ3 in (4.5) were given the recommended values 1, 1 and 0.01 respectively.

Within DFBOLS, we have three versions:

1. The original code from [22], which only allows up to 2n+ 1 interpolation points;

2. A new implementation designed to integrate with the NAG library, which allows
the full O(n2) interpolation points;

3. The new implementation with a slightly different trust region radius update in
the case of a good actual reduction (taken from BOBYQA, rather than [22]).

In Section 6, these versions are labelled ‘DFBOLS’, ‘E04JC-LS’ (NAG’s BOBYQA
routine is named E04JC; this version is adapted to least-squares) and ‘E04JC-LS
BBQTR’ (for BOBYQA Trust Region) respectively. They are all implementations of
the DFBOLS algorithm, as specified in Algorithm 3, and are extensions of the original
BOBYQA algorithm. However, the version from [22] has extra small modifications
that are not included in the NAG implementations (due to licensing restrictions).
The two NAG implementations, E04JC-LS and E04JC-LS BBQTR differ in the trust

14

region radius update formula. When the ratio of actual reduction to predicted model
reduction is at least 0.7 (i.e. a good trust region step), the two updates are

∆k+1 = max(0.5∆k, 2‖dk‖), (5.1)
∆k+1 = max(∆k, 2‖dk‖), (5.2)

where (5.1) is used in BOBYQA and E04JC-LS BBQTR, and (5.2) is used in E04JC-LS.
The BFO solver has the option to train several of its search parameters. Both

untrained parameters and parameters trained on the full test set (with noiseless
objective) were considered. In SID-PSM, the default mesh size was set to be the same
as the starting trust region radius for the model-based methods, i.e. 0.1 max(‖x0‖∞, 1).

Of the full set of solvers, all except Gauss-Newton and fminunc are derivative
free, but only DFBOLS and Gauss-Newton are adapted specifically to least-squares
problems.

The primary termination condition of DFO-basic, BOBYQA and DFBOLS is
when the trust region radius reaches some lower threshold. This indicates that the
set of interpolation points is in a very small region of space, which should be close
to the stationary point. For our testing, we are interested in the progress that each
algorithm can make in a fixed number of function evaluations. Therefore, the lower
threshold on the trust region radius was in all cases set to be much smaller than
machine precision. This means that if the software did terminate due to reaching
the lower trust region radius bound, we should still be very close to the solution,
and shouldn’t expect the algorithm to show substantial improvement even with more
function evaluations. Similarly, for all other solvers, all available termination options
were set to force computational budget to be the main constraint on the algorithm’s
termination.

5.2 Problem Set
The problem set used is a standard one for testing DFO, and comes from [10]. It was
also used in [22]. Both papers use a test suite of 53 least-squares problems, most of
which are from the test set in [9]. These problems have 2 ≤ n ≤ 12 and 2 ≤ m ≤ 65,
and cover linear (full-rank and rank-deficient) and nonlinear residual functions. The
problems also have both zero and nonzero residual solutions, which is important for
testing the approximation (3.4).

As mentioned earlier, one important situation where derivative free algorithms are
useful is when the objective evaluation is noisy. In this test set, residual evaluation
can optionally include either deterministic or stochastic noise of size σ > 0. The
deterministic noise is incorporated by evaluating r̃i(x) =

√
1 + σε(x) ri(x), where

ε(x) := π(x)(4π(x)2 − 3). (5.3)

This is a composition of the high-frequency noise term

π(x) := 0.9 sin(100‖x‖1) cos(100‖x‖∞) + 0.1 cos(‖x‖2), (5.4)

15

with a third-order Chebyshev polynomial. Stochastic noise is incorporated by eval-
uating r̃i(x) = [1 + σε]ri(x), where ε is a uniformly distributed random variable on
(−1, 1), independently drawn for each i and x.

5.3 Measuring Convergence
Typically when testing the convergence of optimisation algorithms, we calculate the
gradient of the objective at each iteration (and stop when it is small). However, in
the derivative free case, this option is not available to us. Therefore we need some
other kind of convergence test. Again, we follow the approach from [10],

We have used settings to force the primary termination criteria to be some compu-
tational budget, say Nf function evaluations. Suppose when we ran a solver S, we
calculated objective values (fS1 , . . . , fSNf

). Since our goal is to compare the results of
different solvers, define the optimum value for a problem to be the smallest objective
value found by any solver:

f ∗ = min
S

min
1≤i≤Nf

fSi . (5.5)

We say that a problem p is ‘solved’ by S within a budget of Np(S; τ) function
evaluations if it is smallest value N such that

fSN ≤ f ∗ + τ(f(x0)− f ∗), (5.6)

holds for a given threshold τ > 0. If a problem is not solved in the sense of (5.6)
within the full Nf function evaluations allowed, we set Np(S; τ) =∞.

In this case, the set of solvers is the set of all methods listed in Section 5.1 over all
input parameter value (e.g. all interpolation set sizes). Also, to allow for the greater
difficulty of problems in higher dimensions, we measure the computational budget in
units of gradients; i.e. units of n+ 1 function evaluations. We denote our collection of
problems p by P .

For the purposes of displaying the numerical results of our testing, we use ‘data
profiles’, which plot the proportion of problems solved within a given computational
budget of α gradients. Formally, for a given solver S and τ , we plot the curve:

dS,τ (α) := |{p ∈ P
: Np(S; τ) ≤ α(np + 1)}|

|P|
, 1 ≤ α ≤ Ng, (5.7)

where np is the dimension of problem p and Ng is the maximum computational budget
(in gradients, so Nf = Ng(np + 1)).

We also include bar graphs showing the proportion of problems for which a given
solver achieved the optimal value f ∗, to within machine precision.

6 Numerical Results
In this section, we consider the performance of the different optimisation solvers, using
the methodology from Section 5.

16

6.1 Comparison of Existing Solvers
First, we compare DFBOLS to other DFO and least-squares algorithms.

In the first set of results, Figure 1, we achieve similar results to those presented in
[22], but considering a broader range of routines. Specifically, we compare DFBOLS to
Gauss-Newton, BOBYQA, DFO-basic and Nelder-Mead. There are several important
features of these results worth mentioning. Firstly, Gauss-Newton does not perform as
well as DFBOLS. This is expected for noisy problems, since it uses finite differences.
However, it performs worse even for noiseless problems, which is surprising. The
main reason for this is that we are constraining the computational budget to measure
results, which means we are unlikely to be reaching the beneficial asymptotic regime
of Gauss-Newton. We are also limiting the desired accuracy in the solution, which
further dilutes the benefit from the asymptotic convergence rate of Gauss-Newton.

Secondly, DFBOLS performs better than both BOBYQA and DFO-basic. The
improvement here, particularly against BOBYQA, comes down to the exploitation of
the least-squares problem structure. However both solvers are much more robust to
noise than Gauss-Newton, indicative of the benefits of derivative-free methods. The
methods BOBYQA and DFO-basic perform similarly. However, BOBYQA performs
overall better, particularly when higher accuracy is required. This is likely due to
the geometry-improving steps, ensuring the interpolation set continues to produce
high quality quadratic models, and the work in the code to avoid significant rounding
errors. Note that the choice of O(n2) interpolation points for BOBYQA matches the
long-term behaviour of DFO-basic, which typically grows the interpolation set from
2n+ 1 to O(n2) points, where it is maintained. Similarly, the larger interpolation set
is important for a fair comparison to DFBOLS, since even with 2n+ 1 interpolation
points DFBOLS includes a significant amount of curvature information.

Throughout, it is of particular interest to note that DFBOLS is able to make
substantial progress with very small budgets. It is here where the benefit compared
to the other solvers is most noticeable.

Lastly, the performance of Nelder-Mead is substantially worse than the other
general-purpose DFO solvers (BOBYQA and DFO-basic). Although it is well-known
and popular among practicioners, these results do demonstrate that the development of
model-based methods have noticeably improved the performance of DFO algorithms.

6.2 Performance of New Solver
As we have seen, the DFBOLS algorithm has strong numerical performance. This
demonstrates that it would be a worthwhile inclusion in the NAG library (hence the
implementation of E04JC-LS). Here we examine the performance of this algorithm.

In Figure 2, we compare DFBOLS with the E04JC-LS code implemented on
NAG’s BOBYQA codebase. Both versions of trust region update formulae (5.1)
and (5.2) are included. We see that both versions of E04JC-LS perform similarly
to DFBOLS, particularly when low accuracy is required. However, when higher
accuracy is required, DFBOLS performs better. As mentioned in Section 5.1, there
are some small differences between DFBOLS and E04JC-LS, and these end up having

17

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS 2n+ 1
DFO-basic
fminsearch
BOBYQA O(n2)
Gauss-Newton

(a) Noiseless objective, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS 2n+ 1
DFO-basic
fminsearch
BOBYQA O(n2)
Gauss-Newton

(b) Noiseless objective, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS 2n+ 1
DFO-basic
fminsearch
BOBYQA O(n2)
Gauss-Newton

(c) Deterministic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS 2n+ 1
DFO-basic
fminsearch
BOBYQA O(n2)
Gauss-Newton

(d) Deterministic noise, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS 2n+ 1
DFO-basic
fminsearch
BOBYQA O(n2)
Gauss-Newton

(e) Stochastic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS 2n+ 1
DFO-basic
fminsearch
BOBYQA O(n2)
Gauss-Newton

(f) Stochastic noise, τ = 10−7

DFBOLS 2n + 1 DFO-basic fminsearch BOBYQA O(n2) Gauss-Newton
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(g) Noiseless objective
DFBOLS 2n + 1 DFO-basic fminsearch BOBYQA O(n2) Gauss-Newton

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(h) Deterministic noise
DFBOLS 2n + 1 DFO-basic fminsearch BOBYQA O(n2) Gauss-Newton

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(i) Stochastic noise

Figure 1: Comparison of solvers: DFO-basic, BOBYQA with (n + 1)(n + 2)/2
interpolation points, DFBOLS with 2n+ 1 interpolation points, Gauss Newton (line-
search parameter η = 0.5), and Nelder-Mead. Noise level is σ = 10−3.

18

a moderate impact on the solvers’ performances. There is no clear preference between
the two trust region update formulae (5.1) and (5.2) – the update (5.2) is better for
noiseless problems, and (5.1) is better for noisy problems.

Although E04JC-LS does not perform quite as well as DFBOLS, in Figure 3, we
show the same solvers as Figure 1 but replacing DFBOLS with E04JC-LS (with trust
region update (5.2)). The same conclusions as drawn above continue to apply here.
Specifically, E04JC-LS performs better than all other algorithms (even Gauss-Newton
for noiseless problems). This holds for noiseless and noisy function evaluations, and
with low or high accuracy requirements. Again, the difference between E04JC-LS and
the other solvers is most noticeable for small computational budgets (e.g. fewer than
5 gradients), but it is also apparent more generally – E04JC-LS solves more problems,
and solves them more quickly.

Now consider Figure 4. Here, we just consider the BOBYQA algorithm with
different interpolation set sizes – n + 2, 2n + 1 and (n + 1)(n + 2)/2. Throughout,
it is preferable to have 2n + 1 points rather than n + 2 (the minimum allowed).
This tells us that having some curvature information provides substantial benefit,
even if it means a greater start-up cost, and the interpolation set moves towards the
solution more slowly (as more points have to be shifted). Again, there is a benefit to
moving towards a fully quadratic model with O(n2) interpolation points. However
because of the substantial increase in the start-up cost, this benefit is not seen for
small computational budgets. The benefit of having a larger interpolation set is more
noticeable when high accuracy is desired, and when function evaluations are noiseless.
This is an important observation – by adding noise, we lose some of the benefit of
larger interpolation sets. We will return to the issue of noisy problems in Section 7.

In Figure 5, we perform the same analysis but for E04JC-LS. The contrast with
Figure 4 is stark – the impact of changing interpolation set size from n+ 2 to 2n+ 1 to
(n+ 1)(n+ 2)/2 is minimal. Regardless of the amount of noise or the desired accuracy,
very little difference is observed. The main difference is the start-up cost, which is
unavoidable with the current algorithm, where the objective is evaluated at all points
in an initial interpolation set before starting the trust region iterations.

Lastly, we consider Figure 6. This compares E04JC-LS and BOBYQA with the
general-purpose solvers fminunc (using finite differences), BFO and SID-PSM (both
pattern-search DFO algorithms). None of these algorithms perform as well as E04JC-
LS, which is unsurprising since none are adapted for least-squares problems; a fairer
comparison is against BOBYQA.

As we saw with Gauss-Newton, fminunc does well (comparable with BOBYQA)
for noiseless problems, but significantly worse as soon as noise is introduced.

BFO tends not to perform as well as the other solvers. This is likely because it
is a very general-purpose algorithm, which can handle constraints and even discrete
variables. Surprisingly, the benefit from training the search parameters – and using
the same problems for training as testing – is small.

SID-PSM, however, does perform consistently well. Its performance is mostly
below BOBYQA’s, but it is often able to make some progress very quickly, within 1-2
gradients. This is an indication that it uses a good choice of initial search directions,
which may be worth incorporating into model-based methods.

19

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS
E04JC-LS
E04JC-LS BBQTR

(a) Noiseless objective, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS
E04JC-LS
E04JC-LS BBQTR

(b) Noiseless objective, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS
E04JC-LS
E04JC-LS BBQTR

(c) Deterministic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS
E04JC-LS
E04JC-LS BBQTR

(d) Deterministic noise, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS
E04JC-LS
E04JC-LS BBQTR

(e) Stochastic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFBOLS
E04JC-LS
E04JC-LS BBQTR

(f) Stochastic noise, τ = 10−7

DFBOLS E04JC-LS E04JC-LS BBQTR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
g
o
t
b
es
t
re
su
lt

(g) Noiseless objective
DFBOLS E04JC-LS E04JC-LS BBQTR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
g
o
t
b
es
t
re
su
lt

(h) Deterministic noise
DFBOLS E04JC-LS E04JC-LS BBQTR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
g
o
t
b
es
t
re
su
lt

(i) Stochastic noise

Figure 2: Comparison of different versions of DFBOLS, all with 2n+ 1 interpolation
points. Versions are Zhang’s code, and NAG’s code with two trust region updates.
Noise level is σ = 10−3.

20

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFO-basic
fminsearch
BOBYQA O(n2)
E04JC-LS 2n+ 1
Gauss-Newton

(a) Noiseless objective, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFO-basic
fminsearch
BOBYQA O(n2)
E04JC-LS 2n+ 1
Gauss-Newton

(b) Noiseless objective, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFO-basic
fminsearch
BOBYQA O(n2)
E04JC-LS 2n+ 1
Gauss-Newton

(c) Deterministic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFO-basic
fminsearch
BOBYQA O(n2)
E04JC-LS 2n+ 1
Gauss-Newton

(d) Deterministic noise, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFO-basic
fminsearch
BOBYQA O(n2)
E04JC-LS 2n+ 1
Gauss-Newton

(e) Stochastic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

DFO-basic
fminsearch
BOBYQA O(n2)
E04JC-LS 2n+ 1
Gauss-Newton

(f) Stochastic noise, τ = 10−7

DFO-basic fminsearch BOBYQA O(n2) E04JC-LS 2n + 1 Gauss-Newton
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(g) Noiseless objective
DFO-basic fminsearch BOBYQA O(n2) E04JC-LS 2n + 1 Gauss-Newton

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(h) Deterministic noise
DFO-basic fminsearch BOBYQA O(n2) E04JC-LS 2n + 1 Gauss-Newton

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(i) Stochastic noise

Figure 3: Comparison of solvers: DFO-basic, BOBYQA with (n + 1)(n + 2)/2
interpolation points, E04JC-LS with 2n + 1 interpolation points, Gauss Newton
(line-search parameter η = 0.5), and Nelder-Mead. Noise level is σ = 10−3.

21

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BOBYQA n+ 2
BOBYQA 2n+ 1
BOBYQA O(n2)

(a) Noiseless objective, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BOBYQA n+ 2
BOBYQA 2n+ 1
BOBYQA O(n2)

(b) Noiseless objective, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BOBYQA n+ 2
BOBYQA 2n+ 1
BOBYQA O(n2)

(c) Deterministic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BOBYQA n+ 2
BOBYQA 2n+ 1
BOBYQA O(n2)

(d) Deterministic noise, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BOBYQA n+ 2
BOBYQA 2n+ 1
BOBYQA O(n2)

(e) Stochastic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BOBYQA n+ 2
BOBYQA 2n+ 1
BOBYQA O(n2)

(f) Stochastic noise, τ = 10−7

BOBYQA n + 2 BOBYQA 2n + 1 BOBYQA O(n2)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(g) Noiseless objective
BOBYQA n + 2 BOBYQA 2n + 1 BOBYQA O(n2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(h) Deterministic noise
BOBYQA n + 2 BOBYQA 2n + 1 BOBYQA O(n2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(i) Stochastic noise

Figure 4: Comparison of BOBYQA with interpolation set sizes n + 2, 2n + 1 and
(n+ 1)(n+ 2)/2. Noise level is σ = 10−3.

22

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

E04JC-LS n+ 2
E04JC-LS 2n+ 1
E04JC-LS O(n2)

(a) Noiseless objective, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

E04JC-LS n+ 2
E04JC-LS 2n+ 1
E04JC-LS O(n2)

(b) Noiseless objective, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

E04JC-LS n+ 2
E04JC-LS 2n+ 1
E04JC-LS O(n2)

(c) Deterministic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

E04JC-LS n+ 2
E04JC-LS 2n+ 1
E04JC-LS O(n2)

(d) Deterministic noise, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

E04JC-LS n+ 2
E04JC-LS 2n+ 1
E04JC-LS O(n2)

(e) Stochastic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

E04JC-LS n+ 2
E04JC-LS 2n+ 1
E04JC-LS O(n2)

(f) Stochastic noise, τ = 10−7

E04JC-LS n + 2 E04JC-LS 2n + 1 E04JC-LS O(n2)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(g) Noiseless objective
E04JC-LS n + 2 E04JC-LS 2n + 1 E04JC-LS O(n2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(h) Deterministic noise
E04JC-LS n + 2 E04JC-LS 2n + 1 E04JC-LS O(n2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(i) Stochastic noise

Figure 5: Comparison of E04JC-LS with interpolation set sizes n + 2, 2n + 1 and
(n+ 1)(n+ 2)/2. Noise level is σ = 10−3.

23

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BFO trained
BFO untrained
fminunc
BOBYQA O(n2)
E04JC-LS
SID-PSM

(a) Noiseless objective, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BFO trained
BFO untrained
fminunc
BOBYQA O(n2)
E04JC-LS
SID-PSM

(b) Noiseless objective, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BFO trained
BFO untrained
fminunc
BOBYQA O(n2)
E04JC-LS
SID-PSM

(c) Deterministic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BFO trained
BFO untrained
fminunc
BOBYQA O(n2)
E04JC-LS
SID-PSM

(d) Deterministic noise, τ = 10−7

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BFO trained
BFO untrained
fminunc
BOBYQA O(n2)
E04JC-LS
SID-PSM

(e) Stochastic noise, τ = 10−3

0 5 10 15 20 25 30 35 40 45 50

Budget (number of gradients)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
so
lv
ed

BFO trained
BFO untrained
fminunc
BOBYQA O(n2)
E04JC-LS
SID-PSM

(f) Stochastic noise, τ = 10−7

BFO trained BFO untrained fminunc BOBYQA O(n2) E04JC-LS SID-PSM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(g) Noiseless objective
BFO trained BFO untrained fminunc BOBYQA O(n2) E04JC-LS SID-PSM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(h) Deterministic noise
BFO trained BFO untrained fminunc BOBYQA O(n2) E04JC-LS SID-PSM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
p
ro
b
le
m
s
w
h
er
e
go
t
b
es
t
re
su
lt

(i) Stochastic noise

Figure 6: Comparison of solvers: fminunc, BFO and SID-PSM, compared to E04JC-LS
with 2n+1 points and BOBYQA with (n+1)(n+2)/2 points. Noise level is σ = 10−3.

24

7 Future Research Directions
From the work described in previous sections, there are several ideas that provide us
with some future research directions. In this section, we will examine some of these
ideas, and how further work may improve upon current DFO algorithms. This work
has the potential improve both DFO for general problems and least-squares problems.

7.1 Startup Cost
One important use case of DFO algorithms is when function evaluations are computa-
tionally expensive compared to the cost of the algorithm. This situation occurs for
instance in data fitting for finance and data assimilation for weather forecasting.

In all DFO algorithms mentioned previously, the first step is to generate a set of
sample points and evaluate the objective at each of these. The set of points is of size
O(n) or O(n2). Only after these function evaluations have been performed does the
algorithm properly commence and progress is made. We see this in, e.g. Figure 1,
where no problems are solved for very small budgets (e.g. less than 1 gradient).

Although this step may be parallelisable, if function evaluation is expensive then we
may not have time for even these initial evaluations. Also, in this scenario, practitioners
may wish to see some progress immediately, and only be interested in finding some
reduction in the objective, rather than a point close to a local minimum. It is therefore
desirable to consider ways we can make progress before reaching the minimum n+ 2
function evaluations required for BOBYQA and E04JC-LS.

One approach is, if we only have a small number of points, to limit our search
directions to a subspace of Rn – the span of directions in which we already have sampled
the objective. In the least-squares case, we also have the option of constructing a
simpler model by only evaluating a subset of the residual functions ri. Together, we can
think of approximating our true Jacobian with a subset of its rows and columns (and
setting all other elements to zero). Similar approaches have recently been considered
for machine learning problems, e.g. [15, 16, 21]. A modification of the Gauss-Newton
method (using derivatives) in which only a subset of directions were searched was
studied in [6], and good numerical performance was observed.

7.2 Performance under noise
Throughout the numerical results, each solver solved substantially fewer problems
(especially to high accuracy) once noise was introduced. Function evaluations may be
subject to noise in reality from the incorporation of input uncertainty, or the use of
Monte Carlo simulations. As we have seen in Section 6, finite differences no longer
produce accurate values, so derivative-free algorithms are crucial. However, E04JC-LS
with 2n+ 1 interpolation points solves (in a 50 gradient budget, to within accuracy
τ = 10−7) only approximately 60% of problems with stochastic noise, compared to
over 90% of problems without noise.

The model-based methods currently construct models based on interpolation
conditions such as (2.8). However if evaluation is noisy, then the exact numerical values

25

of f(y) are unreliable. This leads to the question – why impose exact interpolation
conditions when function evaluations are noisy? In general, the relative success of
DFO algorithms compared to finite difference-based algorithms is related to the fact
that noise affects the interpolation (over points separated by relatively large gaps) less
than derivative calculations (over points very close together). However, as we converge
to a solution, this becomes less true. It is worth noting that [3, Chapter 4] already
considers the case of an over-determined interpolation problem, so the linear system
from (2.8) is solved in a least-squares minimisation sense. That is, the interpolation
can never be solved exactly.

One research direction would be to consider when and how to build approximate
interpolation models. This would allow uncertainty in function evaluations to be
naturally captured, and likely have the extra benefit of improving the speed of the
interpolation step (currently the most expensive part of BOBYQA and E04JC-LS).

By analogy, the trust region subproblem (2.6) is often not solved to high precision.
In fact, for a globally convergent algorithm, the only requirement is that the solution
produces at least as much reduction as steepest descent. It is possible that similar errors
may also be allowable for the interpolation step without breaking any convergence
guarantees.

7.3 Large-scale problems
Many important optimisation problems, such as oil well modelling and data assimilation
for weather forecasting, have high dimension. Currently, DFO software is designed to
work on problems of small dimension, e.g. up to n = O(100). In higher dimensions,
several problems can occur:

• Evaluating the function even n times may be prohibitively expensive;

• There are many more possible search directions, so more iterations are likely to
achieve the same improvement; and

• For very large n, even simple operations such as matrix-vector multiplication may
be too expensive to perform at each iteration. Similarly, the memory required
to store a n× n matrix may be more than is available on a given machine.

Although parallelisation can offset some of these difficulties, DFO algorithms do not
have this ability at the moment.

One approach for improving DFO algorithms in high dimensions would be to
exploit sparsity in the problem. For instance, efficient construction of models using
techniques from compressive sensing was considered in [1].

Also, the techniques discussed in Section 7.1 would also be applicable here, where
we search a tractable subspace. In the least-squares case, we also have the option of
building models and evaluating objectives for a subset of residuals.

26

8 Conclusions
Derivative-free optimisation is an important area that has seen substantial progress
over the last 10-15 years. It is most useful when function evaluation is noisy (so finite
differences are inaccurate) or expensive (so progress must be made in few iterations,
and finding high-accuracy solutions is not appropriate). There are numerous real-world
situations where such methods are appropriate, for instance in finance, energy, climate
and engineering design.

One important class of derivative-free algorithms are extensions of classical trust-
region methods, where models approximating the objective are constructed by interpo-
lation rather than by Taylor series expansions. To do this, one maintains a set of points,
and must consider the geometry of these points and how to appropriately solve the
resulting interpolation problem (e.g. when it is underdetermined). Several algorithms
of this type exist, and the NAG library has one such method, called BOBYQA.

Least-squares problems are one of the most common optimisation problems, and
are particularly important for data fitting. We can combine general-purpose derivative-
free methods such as BOBYQA with classical gradient-based least-squares methods
to build derivative-free methods which properly exploit the underlying structure in
the problem. One example is DFBOLS, based on the methods described in Section 4
and [22]. The same approach has been used to extend the NAG implementation of
BOBYQA to produce a new solver, called E04JC-LS, which will feature in a future
release of the NAG library.

By considering a well-known set of test least-squares problems, we have been
able to compare different solvers. We see that when computational budget is the
main limiting factor for a user, that derivative-free solvers outperform comparable
derivative-based solvers. This is particularly noticeable when function evaluation is
noisy, and derivative-based solvers fail to make any progress. We have also seen a
substantial benefit from exploiting the least-squares structure of problems. Ultimately,
DFBOLS and E04JC-LS perform very well for a wide range of problems in a wide
range of settings.

This work has also raised questions and topics which could form the basis of future
research work. Of particular relevance are problems with noisy function evaluations
and/or high underlying dimension. We may find both of these features in problems in
oil well modelling and weather forecasting, for instance.

Since computational budget is often the limiting factor, particularly for large
scale problems, we wish to make the best possible use of every function evaluation.
Currently the initial function evaluations are at a predetermined set of points, but
sometimes just performing these evaluations may be prohibitively expensive. Thus we
should consider how to more efficiently build an initial interpolation set, using all the
information available as we receive it, even if we only have 2 or 3 function values.

Also, the imposition of exact interpolation when building our model is compu-
tationally expensive and inappropriate for noisy functions. We should investigate
methods for building approximate interpolation models, or performing interpolation
under noise. This could improve the robustness of DFO methods for noisy functions,
and improve the tractability of DFO algorithms for large scale problems.

27

8.1 Postscript (November 2018)
The code E04JC-LS has been incorporated into the NAG Library, and is available as
routine E04FFF; see

https:
//www.nag.co.uk/content/derivative-free-optimization-data-fitting

for details.

28

References
[1] A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Computation of

sparse low degree interpolating polynomials and their application to derivative-free
optimization, Math. Program., 134 (2012), pp. 223–257.

[2] A. R. Conn, K. Scheinberg, and P. L. Toint, A Derivative Free Opti-
mization Algorithm in Practice, in Proc. 7th AIAA/USAF/NASA/ISSMO Symp.
Multidiscip. Anal. Optim., St. Louis, MO, 1998.

[3] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-
Free Optimization, vol. 8 of MPS-SIAM Series on Optimization, MPS/SIAM,
Philadelphia, 2009.

[4] A. L. Custódio, H. Rocha, and L. N. Vicente, Incorporating minimum
Frobenius norm models in direct search, Comput. Optim. Appl., 46 (2010), pp. 265–
278.

[5] A. L. Custódio and L. N. Vicente, Using Sampling and Simplex Derivatives
in Pattern Search Methods, SIAM J. Optim., 18 (2007), pp. 537–555.

[6] N. W. Eizenberg, Parameter Estimation for Climate models, msc thesis, Uni-
versity of Oxford, 2015.

[7] G. Fasano, J. L. Morales, and J. Nocedal, On the geometry phase in
model-based algorithms for derivative-free optimization, Optim. Methods Softw.,
24 (2009), pp. 145–154.

[8] P. E. Gill and W. Murray, Algorithms for the Solution of the Nonlinear
Least-Squares Problem, SIAM J. Numer. Anal., 15 (1978), pp. 977–992.

[9] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing Unconstrained
Optimization Software, ACM Trans. Math. Softw., 7 (1981), pp. 17–41.

[10] J. J. Moré and S. M. Wild, Benchmarking Derivative-Free Optimization
Algorithms, SIAM J. Optim., 20 (2009), pp. 172–191.

[11] NAG, E04FC Unconstrained Least-Squares (function values only), 2016.

[12] , E04JC Bound-constrained derivative-free optimisation (BOBYQA), 2016.

[13] J. A. Nelder and R. Mead, A simplex method for function minimization,
Comput. J., 7 (1964), pp. 308–313.

[14] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in
Operations Research and Financial Engineering, Springer, New York, 2nd ed.,
2006.

[15] M. Pilanci and M. J. Wainwright, Randomized Sketches of Convex Programs
With Sharp Guarantees, IEEE Trans. Inf. Theory, 61 (2015), pp. 5096–5115.

29

[16] , Iterative Hessian sketch: Fast and accurate solution approximation for
constrained least-squares, J. Mach. Learn. Res., 17 (2016), pp. 1–38.

[17] M. Porcelli and P. L. Toint, BFO, a trainable derivative-free Brute Force
Optimizer for nonlinear bound-constrained optimization and equilibrium compu-
tations with continuous and discrete variables, tech. rep., University of Namur,
2015.

[18] M. J. D. Powell, On the use of quadratic models in unconstrained minimization
without derivatives, Optim. Methods Softw., 19 (2004), pp. 399–411.

[19] , The NEWUOA software for unconstrained optimization without derivatives,
vol. 83 of Nonconvex Optimization and Its Applications, Springer, Boston, MA.,
2006, pp. 255–297.

[20] , The BOBYQA algorithm for bound constrained optimization without deriva-
tives, tech. rep., University of Cambridge, 2009.

[21] F. Roosta-Khorasani and M. W. Mahoney, Sub-Sampled Newton Methods
I: Globally Convergent Algorithms, arXiv Prepr. arXiv1601.04737, (2016).

[22] H. Zhang, A. R. Conn, and K. Scheinberg, A Derivative-Free Algorithm
for Least-Squares Minimization, SIAM J. Optim., 20 (2010), pp. 3555–3576.

30

