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Outline

1. Convex-constrained derivative-free optimisation (DFO)

2. Quadratic model construction
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Convex-Constrained DFO

min
x∈Rn

f (x), s.t. x ∈ C .

� Objective f : Rn → R is smooth (C 1 with Lipschitz gradient) and nonconvex

� Constraint set C is closed and convex, with nonempty interior and easy-to-compute

Euclidean projection

projC (x) := argmin
y∈C

∥y − x∥2.

e.g. bounds, ball, linear inequalities, ...

Focus is on the derivative-free optimisation (DFO) setting: although ∇f exists, we only

have access to the zero-th order oracle x 7→ f (x).

Looking for a strictly feasible method, i.e. cannot evaluate f at infeasible points

(e.g.
√
x with x ≥ 0).

Convex-Constrained DFO — Lindon Roberts (lindon.roberts@sydney.edu.au) 3



Convex-Constrained DFO

min
x∈Rn

f (x), s.t. x ∈ C .

� Objective f : Rn → R is smooth (C 1 with Lipschitz gradient) and nonconvex

� Constraint set C is closed and convex, with nonempty interior and easy-to-compute

Euclidean projection

projC (x) := argmin
y∈C

∥y − x∥2.

e.g. bounds, ball, linear inequalities, ...

Focus is on the derivative-free optimisation (DFO) setting: although ∇f exists, we only

have access to the zero-th order oracle x 7→ f (x).

Looking for a strictly feasible method, i.e. cannot evaluate f at infeasible points

(e.g.
√
x with x ≥ 0).

Convex-Constrained DFO — Lindon Roberts (lindon.roberts@sydney.edu.au) 3



Convex-Constrained DFO

min
x∈Rn

f (x), s.t. x ∈ C .

� Objective f : Rn → R is smooth (C 1 with Lipschitz gradient) and nonconvex

� Constraint set C is closed and convex, with nonempty interior and easy-to-compute

Euclidean projection

projC (x) := argmin
y∈C

∥y − x∥2.

e.g. bounds, ball, linear inequalities, ...

Focus is on the derivative-free optimisation (DFO) setting: although ∇f exists, we only

have access to the zero-th order oracle x 7→ f (x).

Looking for a strictly feasible method, i.e. cannot evaluate f at infeasible points

(e.g.
√
x with x ≥ 0).

Convex-Constrained DFO — Lindon Roberts (lindon.roberts@sydney.edu.au) 3



Applications

Application 1: Climate Modelling [Tett et al., 2022]

� Parameter calibration for global climate models (least squares minimisation)

� One model run = simulate global climate for 5 years = expensive

� Very complicated, chaotic physics = black-box & noisy

� Box constraints, x ∈ [xL, xU ], expected parameter ranges180° 120°W 60°W 0°W 60°E 120°E 180°
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Applications

Application 2: Adversarial Example Generation [Alzantot et al., 2019]

� Find perturbations of neural network inputs which are misclassified (min. probability

of correct label/max. probability of desired incorrect label)

� Neural network structure assumed to be unknown = black-box

� Want to test very few examples ≈ expensive

� Useful for copyright protection of artists’ work against generative AI [Shan et al., 2023]

� Box or ball constraints to find small perturbation, x ≈ xorig

Image from [Goodfellow et al., 2015]
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Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)
T s +

1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Geometry of points good =⇒ interpolation model Taylor-accurate =⇒ convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Model-Based DFO — Basic Ideas

Implement in trust-region method:

1. Build interpolation model mk(s)

2. Minimize model inside trust region

sk = argmin
s∈Rn

mk(s) s.t. ∥s∥2 ≤ ∆k , xk + s ∈ C .

3. Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)

4. Update interpolation set: add xk + sk to interpolation set

5. If needed, ensure new interpolation set is ‘good’
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Model-Based DFO — Theory

Convergence? Define the stationarity measure (unconstrained case π(x) = ∥∇f (x)∥)

π(x) :=

∣∣∣∣∣∣ min
x+d∈C
∥d∥≤1

∇f (x)Td

∣∣∣∣∣∣
Note: π(x) ≥ 0, π(x∗) = 0 if and only if x∗ first-order critical, Lipschitz continuous in x .

Convergence & worst-case complexity match derivative-based trust-region methods.

Theorem (Hough & LR, 2022)

If f has Lipschitz continuous gradient and is bounded below, then we have

limk→∞ π(xk) = 0. Furthermore, we achieve π(xk) ≤ ϵ for the first time after at most

O(ϵ−2) iterations.
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Model-Based DFO — Theory

What is a ‘good interpolation set’ and ‘good model’?

In the unconstrained case, we have:

� A model f (xk + s) ≈ mk(s) is fully linear if, for all ∥s∥2 ≤ ∆k ,

|f (xk + s)−mk(s)| = O(∆2
k), and ∥∇f (xk + s)−∇mk(s)∥2 = O(∆k),

(e.g. linear Taylor series)

� An interpolation set is Λ-poised if

max
t

max
∥s∥2≤∆k

|ℓt(xk + s)| ≤ Λ,

where ℓt is the t-th Lagrange polynomial for the set (i.e. ℓt(y s) = δs,t).

� If interpolation set is Λ-poised and all points are O(∆2
k) from xk , then the

corresponding interpolation model is fully linear. [Conn, Scheinberg & Vicente, 2009]
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Model-Based DFO — Theory

In the convex-constrained case, we have:

� A model f (xk + s) ≈ mk(s) is C -fully linear if, for all ∥s∥2 ≤ ∆k with xk + s ∈ C ,

|f (xk + s)−mk(s)| = O(∆2
k), and ∥∇f (xk + s)−∇mk(s)∥2 = O(∆k).

� An interpolation set is Λ-poised in C if

max
t

max
∥s∥2≤∆k
xk+s∈C

|ℓt(xk + s)| ≤ Λ.

� If interpolation set is Λ-poised in C and all points are O(∆2
k) from xk , then the

corresponding interpolation model is C -fully linear. [Hough & LR, 2022]

Problem: this theory only works for linear interpolation, but practical methods require

quadratic interpolation models.
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Quadratic Interpolation Models

We want to build a quadratic interpolation model

f (xk + s) ≈ mk(s) = ck + gT
k s +

1

2
sTHks,

by defining an interpolation set {y1, . . . , yp} ⊂ Rn and requiring mk(y t − xk) = f (y t).

Since Hk is symmetric, we have p = 1 + n + n(n+1)
2 = (n+1)(n+2)

2 ≈ n2

2 degrees of

freedom.

If we have this many interpolation points (usually including xk), then mk is uniquely

defined by solving a linear system for ck , gk and upper(Hk) (unless points are chosen

badly).

If n is even moderately large, then this requires a lot of evaluations. Can we use fewer

points?
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Quadratic Interpolation Models

Underdetermined quadratic models

If we have n + 1 < p < (n+1)(n+2)
2 interpolation points, there are (usually) infinitely

many interpolating quadratics.

A practically successful choice is the minimum Hessian Frobenius norm model:

min
ck ,gk ,Hk

∥Hk∥2F , s.t. mk(y t − xk) = f (y t) ∀t = 1, . . . , p, and Hk = HT
k .

Equality-constrained convex QP, reduces to size p + n + 1 linear system with saddle

point structure. [Powell, 2004]
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Underdetermined Quadratic Interpolation Models

Define the corresponding Lagrange polynomials in an analogous way:

min
c,g ,H

∥H∥2F , s.t. ℓt(y s − xk) = δs,t ∀s = 1, . . . , p, and H = HT .

In the unconstrained case, we have:

Theorem (Conn, Scheinberg, Vicente, 2009)

If the interpolation set is Λ-poised (using above defined Lagrange polynomials) and all

points are distance O(∆2
k) from xk , then the interpolation model is fully linear.

Moreover, the model Hessian ∥Hk∥ = O(Λ) is uniformly bounded (standard

requirement for trust-region convergence).
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Underdetermined Quadratic Interpolation Models

New result: theory extends to convex-constrained case exactly like linear interpolation

models:

Theorem (LR, 2024)

If the interpolation set is Λ-poised in C and all points are distance O(∆2
k) from xk ,

then the interpolation model is C -fully linear.

Note: if we require all points to be in C , then regular unconstrained definitions may

yield arbitrarily large constants (ruins theoretical complexity bound).

We do not have a uniform bound on ∥Hk∥, and instead can only bound Rayleigh

quotient-type quantities:

max
s,t=1,...,p

(y s − xk)
THk(y t − xk)

maxu ∥yu − xk∥2
≤ O(Λ).
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Underdetermined Quadratic Interpolation Models

How do we make a set Λ-poised?

Algorithm to ensure Λ-poisedness:

� Find t and y ∈ B(xk ,∆k) ∩ C with |ℓt(y − xk)| > Λ.

� If no such t and y exist, set is Λ-poised.

� If t and y found, replace y t with y and loop.

This the unconstrained and extends to the convex-constrained case without issue. Key

theoretical idea:

| det(Fnew)| ≥ ℓt(y − xk)
2 · | det(Fold)| ≥ Λ2 · | det(Fold)|,

where Fold and Fnew are the linear systems for the minimum Frobenius QP before/after

point swap. (harder if Fold not invertible)
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Conclusions & Future Work

Conclusions

� Trust-region theory works with convex constraint sets

� Easy to construct feasible linear interpolation models

� New theory for minimum Frobenius norm quadratic interpolation models in feasible
sets

– Justifies steps used in state-of-the-art software (e.g. COBYQA in SciPy), where

Lagrange polynomials are maximized subject to bound constraints.

Future Work

� Extend algorithm theory to second-order optimality

� Fully quadratic interpolation theory (i.e. using full p ≈ n2/2 interpolation points)
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Updating Invalid Set

If want to update an interpolation set with singular QP matrix

F =

[
Q M

MT 0

]
.

� Compute QR factorization with column pivoting for both M and

[
Q

MT

]
� Select a subset of p ≥ n + 1 points where both submatrices are full column rank

(ensures F invertible)
� While need more interpolation points:

– Find y such that S(y) := 1
2∥y − xk∥4 − ϕ(y)TF−1ϕ(y) ̸= 0

– Add y to the interpolation set, recompute F and loop

In the above, ϕ(y) is a specific vector satisfying ℓt(y − xk) = eT
t F

−1ϕ(y).
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Updating Invalid Set

Why does this work?

Initial selection of points (both matrices full column rank) ensures F is initially invertible.

Adding y to the interpolation set yields, up to permutations,

Fnew =

[
Fold ϕ(y)

ϕ(y)T 1
2∥y − xk∥4

]
,

and so Fold invertible and S(y) is invertible (i.e. nonzero) implies Fnew invertible.

Recall: if A is invertible, then the saddle point system[
A B

BT C

]
,

is invertible if and only if the Schur complement S := C − BTA−1B is invertible.

[Benzi, Golub & Liesen, 2005]
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