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Further Reading

This talk is based on:

e M. Hough & LR, Model-Based Derivative-Free Methods for Convex-Constrained
Optimization, SIAM J. Optim 32:4 (2022), pp. 2552-2579.

e LR, Model Construction for Convex-Constrained Derivative-Free Optimization,
arXiv:2403.14960 (2024).
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Outline

1. Convex-constrained derivative-free optimisation (DFO)

2. Quadratic model construction
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Convex-Constrained DFO

min f(x), st. xeC.
xeRn

e Objective f : R” — R is smooth (C! with Lipschitz gradient) and nonconvex
e Constraint set C is closed and convex, with nonempty interior and easy-to-compute
Euclidean projection
projc(x) := argmin ||y — x||2.
yeC
e.g. bounds, ball, linear inequalities, ...
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xeRn
e Objective f : R” — R is smooth (C! with Lipschitz gradient) and nonconvex
e Constraint set C is closed and convex, with nonempty interior and easy-to-compute
Euclidean projection
projc(x) := argmin ||y — x||2.
yeC
e.g. bounds, ball, linear inequalities, ...

Focus is on the derivative-free optimisation (DFO) setting: although Vf exists, we only
have access to the zero-th order oracle x — f(x).
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Convex-Constrained DFO

min f(x), st. xeC.
xeRn
e Objective f : R” — R is smooth (C! with Lipschitz gradient) and nonconvex
e Constraint set C is closed and convex, with nonempty interior and easy-to-compute
Euclidean projection
projc(x) := argmin ||y — x||2.
yeC
e.g. bounds, ball, linear inequalities, ...

Focus is on the derivative-free optimisation (DFO) setting: although Vf exists, we only
have access to the zero-th order oracle x — f(x).

Looking for a strictly feasible method, i.e. cannot evaluate f at infeasible points
(e.g. v/x with x > 0).
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Applications

Application 1: Climate Modelling [Tett et al., 2022]

e Parameter calibration for global climate models (least squares minimisation)
e One model run = simulate global climate for 5 years = expensive

e Very complicated, chaotic physics = black-box & noisy

e Box constraints, x € [x, x|, expected parameter ranges
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Applications

Application 2: Adversarial Example Generation [Alzantot et al., 2019]

e Find perturbations of neural network inputs which are misclassified (min. probability
of correct label/max. probability of desired incorrect label)
Neural network structure assumed to be unknown = black-box

Want to test very few examples & expensive

Useful for copyright protection of artists’ work against generative Al [Shan et al., 2023]

Box or ball constraints to find small perturbation, x ~ Xorig

+.007 x

“panda”
57.7% confidence

“gibbon”
99.3 % confidence

Image from [Goodfellow et al., 2015]
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Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

e Classically (e.g. Newton's method),

1
f(Xk + S) I~ mk(s) = f(Xk) + Vf(xk)Ts + ESTV2f(Xk)$
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Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...
e Classically (e.g. Newton's method),
T [
f(Xk + S) ~ mk(s) = f(Xk) + Vf(xk) s+ 55 \Y% f(Xk)S
e Instead, approximate
T L 7
f(xk+s)~m(s)="r(xx)+8x s+ =s' Hks

2
and find g, and Hy without using derivatives

Convex-Constrained DFO — Lindon Roberts (1indon.roberts@sydney.edu.au) 6



Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

e Classically (e.g. Newton's method),
Te o L T2
f(Xk + S) ~ mk(s) = f(Xk) + Vf(xk) s+ 55 \Y% f(Xk)S
e Instead, approximate

1
F(xk+ )~ m(s) =Ff(xx) + g s+ 5sTHks

and find g, and Hy without using derivatives
e How? Interpolate f over a set of points
e Geometry of points good = interpolation model Taylor-accurate = convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Model-Based DFO — Basic ldeas

Implement in trust-region method:
1. Build interpolation model my(s)

2. Minimize model inside trust region

Sk = argmin mk(s) s.t. HSHQ <Ay, xk+seC.
scR"

3. Accept/reject step and adjust Ay based on quality of new point f(xx + sk)

X, + sy, if sufficient decrease, +— (maybe increase Ay)
Xk+1 = .
" Xk, otherwise. <— (decrease Ay)

4. Update interpolation set: add x, + sj to interpolation set

5. If needed, ensure new interpolation set is ‘good’
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Model-Based DFO — Theory

Convergence? Define the stationarity measure (unconstrained case m(x) = || Vf(x)||)

| T
m(x) = XTJQCVf(x) d
ld|I<1

Note: m(x) > 0, m(x*) = 0 if and only if x* first-order critical, Lipschitz continuous in x.

Convex-Constrained DFO — Lindon Roberts (1indon.roberts@sydney.edu.au) 8



Model-Based DFO — Theory

Convergence? Define the stationarity measure (unconstrained case m(x) = || Vf(x)||)

| T
m(x) = XTJQCVf(x) d
ld|I<1

Note: m(x) > 0, m(x*) = 0 if and only if x* first-order critical, Lipschitz continuous in x.

Convergence & worst-case complexity match derivative-based trust-region methods.
Theorem (Hough & LR, 2022)

If f has Lipschitz continuous gradient and is bounded below, then we have

limg—00 m(xx) = 0. Furthermore, we achieve m(xx) < € for the first time after at most
O(e72) iterations.
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Model-Based DFO — Theory

What is a ‘good interpolation set’ and ‘good model’?
In the unconstrained case, we have:
e A model f(xx + s) =~ my(s) is fully linear if, for all ||s]|2 < Ay,
1f(xk 4+ 8) — me(s)| = O(A%), and ||[VF(xx+8) — Vm(s)]2 = O(Ax),

(e.g. linear Taylor series)
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Model-Based DFO — Theory

What is a ‘good interpolation set’ and ‘good model’?
In the unconstrained case, we have:
e A model f(xx + s) =~ my(s) is fully linear if, for all ||s]|2 < Ay,
1f(xk 4+ 8) — me(s)| = O(A%), and ||[VF(xx+8) — Vm(s)]2 = O(Ax),

(e.g. linear Taylor series)
e An interpolation set is A-poised if

max max |[li(x, +8) <A
P s, bl = A

where /; is the t-th Lagrange polynomial for the set (i.e. £+(y;) = ds,t).
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Model-Based DFO — Theory

What is a ‘good interpolation set’ and ‘good model’?
In the unconstrained case, we have:
e A model f(xy + s) =~ my(s) is fully linear if, for all [|s]|2 < Ay,
1f(xk 4+ 8) — me(s)| = O(A%), and ||[VF(xx+8) — Vm(s)]2 = O(Ax),

(e.g. linear Taylor series)
e An interpolation set is A-poised if

max max |[li(x, +8) <A
P s, bl = A

where /; is the t-th Lagrange polynomial for the set (i.e. £+(y;) = ds,t).
o If interpolation set is A-poised and all points are O(A2) from xy, then the
corresponding interpolation model is fully linear.  [Conn, Scheinberg & Vicente, 2009]
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Model-Based DFO — Theory

In the convex-constrained case, we have:
e A model f(xx + s) ~ my(s) is C-fully linear if, for all ||s|l2 < Ak with xx +s € C,
F(xk+ ) — mi(s)| = O(A2), and [[VF(xy +5) — Vimi(s)]2 = O(As).
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Model-Based DFO — Theory

In the convex-constrained case, we have:
e A model f(xx + s) ~ my(s) is C-fully linear if, for all ||s|l2 < Ak with xx +s € C,
F(xk+ ) — mi(s)| = O(A2), and [[VF(xy +5) — Vimi(s)]2 = O(As).

e An interpolation set is A-poised in C if

max max |[le(xx +5)| <A
t[sl2<Ax
xi+seC
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Model-Based DFO — Theory

In the convex-constrained case, we have:
e A model f(xx + s) ~ my(s) is C-fully linear if, for all ||s|l2 < Ak with xx +s € C,
F(xk+ ) — mi(s)| = O(A2), and [[VF(xy +5) — Vimi(s)]2 = O(As).

e An interpolation set is A-poised in C if

max max |[le(xx +5)| <A
[ (]| PRAV
xi+seC
e If interpolation set is A-poised in C and all points are O(Ai) from x4, then the

corresponding interpolation model is C-fully linear. [Hough & LR, 2022]

Problem: this theory only works for linear interpolation, but practical methods require

quadratic interpolation models.
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Outline

1. Convex-constrained derivative-free optimisation (DFO)

2. Quadratic model construction
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Quadratic Interpolation Models

We want to build a quadratic interpolation model
1
F(xk+s)~me(s)=cc+gls+ EsTHks,

by defining an interpolation set {y;,...,y,} C R" and requiring mi(y, — xx) = f(y,).
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Quadratic Interpolation Models

We want to build a quadratic interpolation model
1
F(xk+s)~me(s)=cc+gls+ EsTHks,

by defining an interpolation set {y;,...,y,} C R" and requiring mk(yt —xg) = f(y,;)
(n+1) (n+1)(n+2)

Since Hj is symmetric, we have p =1+ n+ degrees of

freedom.
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Quadratic Interpolation Models

We want to build a quadratic interpolation model
1
F(xk+s)~me(s)=cc+gls+ EsTHks,

by defining an interpolation set {y;,...,y,} C R" and requiring mk(yt —xg) = f(y,;)

(n+1) (n+1)("+2) degrees of

Since Hj is symmetric, we have p =1+ n+
freedom.

If we have this many interpolation points (usually including x), then my is uniquely
defined by solving a linear system for ¢, g, and upper(Hk) (unless points are chosen
badly).
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Quadratic Interpolation Models

We want to build a quadratic interpolation model
1
F(xk+s)~me(s)=cc+gls+ EsTHks,

by defining an interpolation set {y;,...,y,} C R" and requiring mk(yt —xg) = f(y,;)
(n+1) (n+1)(n+2)

Since Hj is symmetric, we have p =1+ n+ degrees of

freedom.

If we have this many interpolation points (usually including x), then my is uniquely
defined by solving a linear system for ¢, g, and upper(Hk) (unless points are chosen
badly).

If nis even moderately large, then this requires a lot of evaluations. Can we use fewer
points?
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Quadratic Interpolation Models

Underdetermined quadratic models

(n+1)(n+2)
2

If we have n+1 < p< interpolation points, there are (usually) infinitely

many interpolating quadratics.
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Quadratic Interpolation Models

Underdetermined quadratic models

(n+1)(n+2)
2

If we have n+1 < p< interpolation points, there are (usually) infinitely

many interpolating quadratics.

A practically successful choice is the minimum Hessian Frobenius norm model:

min ||Hel|2, st me(y, —xi)=f(y,)Vt=1,....,p, and H,=H,.

CkvgkaHk
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Quadratic Interpolation Models

Underdetermined quadratic models

(n+1)(n+2)
2

If we have n+1 < p< interpolation points, there are (usually) infinitely

many interpolating quadratics.

A practically successful choice is the minimum Hessian Frobenius norm model:

min ||Hel|2, st me(y, —xi)=f(y,)Vt=1,....,p, and H,=H,.

CkvgkaHk

Equality-constrained convex QP, reduces to size p + n+ 1 linear system with saddle
point structure. [Powell, 2004]
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Underdetermined Quadratic Interpolation Models

Define the corresponding Lagrange polynomials in an analogous way:

mithHH,z:, st le(ys—xk)=0s:VYs=1,....,p, and H=HT.
C7g7
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Underdetermined Quadratic Interpolation Models

Define the corresponding Lagrange polynomials in an analogous way:

mir,1_lHH||,2:, st le(ys—xk)=0s:VYs=1,....,p, and H=HT.
C7g7

In the unconstrained case, we have:

Theorem (Conn, Scheinberg, Vicente, 2009)

If the interpolation set is A-poised (using above defined Lagrange polynomials) and all
points are distance O(Ai) from xy, then the interpolation model is fully linear.
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Underdetermined Quadratic Interpolation Models

Define the corresponding Lagrange polynomials in an analogous way:

mithHH,z:, st le(ys—xk)=0s:VYs=1,....,p, and H=HT.
C7g7

In the unconstrained case, we have:

Theorem (Conn, Scheinberg, Vicente, 2009)

If the interpolation set is A-poised (using above defined Lagrange polynomials) and all
points are distance O(Ai) from xy, then the interpolation model is fully linear.

Moreover, the model Hessian ||H|| = O(A) is uniformly bounded (standard
requirement for trust-region convergence).
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Underdetermined Quadratic Interpolation Models

New result: theory extends to convex-constrained case exactly like linear interpolation

models:

Theorem (LR, 2024)

If the interpolation set is A-poised in C and all points are distance O(A?%) from xy,
then the interpolation model is C-fully linear.

Note: if we require all points to be in C, then regular unconstrained definitions may
yield arbitrarily large constants (ruins theoretical complexity bound).
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Underdetermined Quadratic Interpolation Models

New result: theory extends to convex-constrained case exactly like linear interpolation

models:

Theorem (LR, 2024)

If the interpolation set is A-poised in C and all points are distance O(A?%) from xy,
then the interpolation model is C-fully linear.

Note: if we require all points to be in C, then regular unconstrained definitions may
yield arbitrarily large constants (ruins theoretical complexity bound).

We do not have a uniform bound on ||H||, and instead can only bound Rayleigh

quotient-type quantities:

— TH —
max (ys Xk) k(yt 2Xk) O(/\)
s,t=1,...p  maxy |y, — Xkl
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Underdetermined Quadratic Interpolation Models

How do we make a set A-poised?

Algorithm to ensure A-poisedness:

e Find t and y € B(xk, Ax) N C with [le(y — xk)| > A.

e If no such t and y exist, set is A-poised.

e If t and y found, replace y, with y and loop.
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Underdetermined Quadratic Interpolation Models

How do we make a set A-poised?
Algorithm to ensure A-poisedness:

e Find t and y € B(xk, Ax) N C with |[¢:(y — xk)| > A
e If no such t and y exist, set is A-poised.

e If t and y found, replace y, with y and loop.

This the unconstrained and extends to the convex-constrained case without issue. Key
theoretical idea:

| det(Frew)| > Ce(y — xi)? - | det(Foiq)| > A? - | det(Fyig)l,

where Fog and Fpey are the linear systems for the minimum Frobenius QP before/after
point swap. (harder if Foiq not invertible)
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Conclusions & Future Work

Conclusions

e Trust-region theory works with convex constraint sets
e Easy to construct feasible linear interpolation models

e New theory for minimum Frobenius norm quadratic interpolation models in feasible
sets

— Justifies steps used in state-of-the-art software (e.g. COBYQA in SciPy), where
Lagrange polynomials are maximized subject to bound constraints.
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Conclusions & Future Work

Conclusions

e Trust-region theory works with convex constraint sets
e Easy to construct feasible linear interpolation models

e New theory for minimum Frobenius norm quadratic interpolation models in feasible
sets

— Justifies steps used in state-of-the-art software (e.g. COBYQA in SciPy), where
Lagrange polynomials are maximized subject to bound constraints.

Future Work
e Extend algorithm theory to second-order optimality
e Fully quadratic interpolation theory (i.e. using full p ~ n?/2 interpolation points)
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Updating Invalid Set

If want to update an interpolation set with singular QP matrix
R M
F= .
[I\/IT 0

e Compute QR factorization with column pivoting for both M and T

e Select a subset of p > n+ 1 points where both submatrices are full column rank

(ensures F invertible)
e While need more interpolation points:

— Find y such that S(y) := 3|y — x«||* — @(y) T Fep(y) #0
— Add y to the interpolation set, recompute F and loop

In the above, ¢(y) is a specific vector satisfying £:(y — xx) = e] F1¢(y).
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Updating Invalid Set

Why does this work?

Initial selection of points (both matrices full column rank) ensures F is initially invertible.
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Updating Invalid Set

Why does this work?

Initial selection of points (both matrices full column rank) ensures F is initially invertible.

Adding y to the interpolation set yields, up to permutations,

£ Fold o(y)
e Sy = x|

and so Fyq invertible and S(y) is invertible (i.e. nonzero) implies Fpey invertible.
Recall: if A is invertible, then the saddle point system

A B
BT C

is invertible if and only if the Schur complement S := C — BT A"1B is invertible.

)

[Benzi, Golub & Liesen, 2005]
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