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Further Reading

This talk is based on:

� L. Roberts & C. W. Royer, Direct search based on probabilistic descent in reduced

spaces, SIAM J. Optim, 33:4 (2023).

� W. Hare, L. Roberts & C. W. Royer, Expected decrease for derivative-free

algorithms using random subspaces, arXiv:2308.04734, 2023.
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Nonlinear Optimization

Interested in unconstrained nonlinear optimization

min
x∈Rn

f (x),

where the objective function f : Rn → R is smooth.

� f is possibly nonconvex and/or ‘black-box’

– In practice, allow inaccurate evaluations of f , e.g. noise, outcome of iterative process

� Seek local minimizer (actually, approximate stationary point: ∥∇f (x)∥2 ≤ ϵ)

Lots of high-quality algorithms available:

� Linesearch, xk+1 = xk − αkH
−1
k ∇f (xk) (e.g. GD, Newton, BFGS)

� Trust-region methods (adapt well to derivative-free setting)

� Others: cubic regularization, nonlinear CG, ...
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Derivative-Free Optimization

xk+1 = xk − αk [∇2f (xk)]
−1∇f (xk)

� How to calculate derivatives of f in practice?

– Write code by hand

– Finite differences

– Algorithmic differentiation/backpropagation

� Difficulties when function evaluation is

– Black-box

– Noisy

– Computationally expensive

� Alternative — derivative-free optimization (DFO)

� Several approaches, here focus on direct search (simple & flexible)
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Applications

Application 1: Adversarial Example Generation [Alzantot et al., 2019]

� Find perturbations of neural network inputs which are misclassified

� Neural network structure assumed to be unknown (black-box!)

� Want to test very few examples (≈ expensive!)

Image from [Goodfellow et al., 2015]
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Applications

Application 2: Fine-Tuning Large Language Models [Malladi et al., 2023]

� Take pre-trained LLM, tweak parameters to be better at a specific task

� e.g. Sentiment analysis: “[input text]. It was...” (good or bad?)

� Very large models = backpropagation expensive & distributed (FT; 12x more

memory), DFO (MeZO) gives comparable performance

Image from [Malladi et al., 2023]
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Direct Search

Method: Direct Search (simple & easily generalised)

� Given xk ∈ Rn and ∆k > 0, choose a set Dk ⊂ Rn of m vectors
� If there exists d k ∈ Dk with f (xk +∆kd k) < f (xk)− 1

2∆
2
k∥d k∥22

– Set xk+1 = xk +∆kd k and increase ∆k

– Otherwise, set xk+1 = xk and decrease ∆k

For convergence, need Dk to be κ-descent:

max
d∈Dk

−dT∇f (xk)

∥d∥2 · ∥∇f (xk)∥2
≥ κ ∈ (0, 1]

i.e. there is a vector d making an acute angle with −∇f (xk).

Examples: {±e1, . . . ,±en} with κ = 1/
√
n or {e1, . . . , en,−e} with κ ∼ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]
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Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]
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Complexity Theory

Analyse methods using worst-case complexity: how long before ∥∇f (xk)∥2 ≤ ϵ?

Theorem (Vicente, 2013)

If f sufficiently smooth and bounded below, then we find xk with ∥∇f (xk)∥2 ≤ ϵ after

at most O(mκ−2ϵ−2) evaluations of f .

If Dk = {±e1, . . . ,±en}, this becomes O(n2ϵ−2).

The dependency on n can (only) be reduced via randomisation.

Theorem (Gratton et al., 2015)

If Dk is formed by taking m ≥ 2 uniformly random unit vectors, then O(nϵ−2)

function evaluations are required with probability at least 1−O(e−cϵ−2
).

Question: Can we find a systematic way to generate suitable random directions Dk?
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Randomisation for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose x1, . . . , xN ∈ Rd and ϵ ∈ (0, 1). Let A ∈ Rp×d be a matrix with

i.i.d. N (0, p−2) entries and p = Ω(log(N)/ϵ). Then with high probability,

(1− ϵ)∥x i − x j∥2 ≤ ∥Ax i − Ax j∥2 ≤ (1 + ϵ)∥x i − x j∥2, ∀i , j = 1, . . . ,N.

� Random projections approximately preserve distances (& inner products, norms, ...)

� Reduced dimension p depends only on # of points N, not the ambient dimension d !

� Other random constructions satisfy J-L Lemma (Haar subsampling, hashing, ...)
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Subspace methods

We use a subspace method: only search in low-dimensional subspaces of Rn

Subspace framework:

� Generate subspace of dimension p ≪ n given by col(Pk) for random Pk ∈ Rn×p

� Choose Dk ⊂ Rp which is κ-descent for PT
k ∇f (xk) ∈ Rp

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently):

P
[
∥PT

k ∇f (xk)∥2 ≥ α∥∇f (xk)∥2
]
≥ 1− δ, for some α > 0.

i.e. if there is still work to do, then we (probably) know this by only inspecting f in the

subspace. Using J-L lemma, choose p = Ω(1) independent of n.
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Subspace DFO — Complexity

Theorem (R. & Royer, 2023)

If f is sufficiently smooth and bounded below and ϵ sufficiently small, then with

probability at least 1−O(e−cϵ−2
) we find xk with ∥∇f (xk)∥2 ≤ ϵ after at most

O(mκ−2ϵ−2) evaluations of f .

Using standard κ-descent choices in the subspaces, this bound matches the O(nϵ−2)

bounds from random direct search, but with many ways to pick Dk .

For J-L to hold, need p = Ω(1), but unclear how small p can be.
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Example Results

Example results: direct search for different choices of p.
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Showing fraction of test problems solved vs. computational work (# evaluations of f ) —

higher is better.
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Theory says p = Ω(1) works, numerical results say p → 1 optimal. Why might this be

true?
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Average-Case Analysis

Previous analysis was worst-case (over all functions f in a smoothness class). Instead

look at average-case performance.

� Pick random linear function f (x) = vTx

� At xk , pick random p-dimensional subspace

� Follow subspace direct search with 2p directions (i.e. Dk = {±e1, . . . ,±ep})
� Look at expected decrease as function of relevant dimensions

E(p, n) := E[f (xk)− f (xk+1)]

with expectation over uniformly distributed objective functions (unit vectors v) and

subspaces (Stiefel manifold).

Tractable model, assumes f is linear (or ∆k ≪ 1, i.e. close to a solution).
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Average-Case Analysis

Calculating expected decrease leads to an interesting problem:

Lemma

E(p, n) = Eg∼Sn−1 [max(|g1|, . . . , |gp|)]

i.e. for a randomly distributed unit vector g ∈ Rn, ∥g∥2 = 1, what is the expected

∞-norm of its first p coordinates?

Theorem (Hare, R. & Royer, 2023)

E(p, n) =
p2p−1

πp/2
· Γ(n/2)Γ(p/2 + 1/2)

Γ(n/2 + 1/2)
· I(p)

where I(p) is a (nasty) (p − 1)-dimensional integral.
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Nasty Integral

I(p) =
∫
R

p−1∏
j=1

sinj(φj)

 dφp−1 · · · dφ1

where

R =

(φ1, . . . , φp−1) ∈
[π
4
,
π

2

]
×

p−1∏
j=2

[
arctan

(
j−1∏
k=1

1

sin(φk)

)
,
π

2

]

p I(p) Approx.

1 1 1.0000

2 1/
√
2 0.7071

3
(
4 arctan(

√
2) + arctan(460

√
2/329)

)
/(8

√
2) 0.4352

4 arctan(1/(2
√
2))/

√
2 0.2403
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Average-Case Analysis

Although I(p) is nasty, we can still get bounds on it and then look at “expected

decrease per objective evaluation”

Theorem (Hare, R. & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(2p), is strictly
decreasing in p for p = 1, . . . , n.

So, the smallest subspace dimension p = 1 gives the best ‘bang for your buck’.
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Average-Case Analysis

Random subspace methods based on finite differencing for ∇f (xk) give a similar

question: look at expected 2-norm of first p components of random unit vector (much

nicer than ∞-norm) to get a similar result:

E(p, n) =
Γ(n/2)Γ(p/2 + 1/2)

Γ(n/2 + 1/2)Γ(p/2)
≈

√
p

√
n

for p, n large

Theorem (Hare, R. & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(p + 1), satisfies
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=
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]
>

E(4, n)
5
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So E(p, n)/(p + 1) is strictly decreasing in p for p ≥ 2, not p ≥ 1.
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Conclusions & Future Work

Conclusions

� Randomised projections can be effective for dimensionality reduction

� Novel average-case analysis can give fine-grained understanding of algorithm

performance

Future Work

� Second-order analysis (second-order stationarity conditions, random quadratic

objectives)

� Problems with constraints
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