Derivative-Free Optimization with Convex Constraints

Joint work with Matthew Hough (Waterloo)

Lindon Roberts, Australian National University (lindon.roberts@anu.edu.au)

Workshop on Optimisation, Metric Bounds, Approximation and Transversality (WOMBAT) 14 December 2021

Outline

- 1. Unconstrained derivative-free optimization (DFO)
- 2. Convex constraints: algorithm and interpolation geometry
- 3. Application to least-squares & numerical results

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

• Objective *f* nonlinear, nonconvex, structure unknown

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

- Objective f nonlinear, nonconvex, structure unknown
- Standard methods locally approximate f by quadratic models (e.g. Taylor series)
- How to calculate derivatives of f to build model?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation (backpropagation)

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

- Objective f nonlinear, nonconvex, structure unknown
- Standard methods locally approximate f by quadratic models (e.g. Taylor series)
- How to calculate derivatives of f to build model?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation (backpropagation)
- Difficulties when function evaluation is black-box, noisy and/or expensive

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

- Objective f nonlinear, nonconvex, structure unknown
- Standard methods locally approximate f by quadratic models (e.g. Taylor series)
- How to calculate derivatives of f to build model?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation (backpropagation)
- Difficulties when function evaluation is black-box, noisy and/or expensive
- Alternative derivative-free optimization (DFO) [aka "zero-order methods"]
 - Applications in finance, climate, engineering, machine learning, ...

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

• Classically (e.g. Newton's method),

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \nabla^2 f(\mathbf{x}_k) \mathbf{s}$$

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

• Classically (e.g. Newton's method),

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \nabla^2 f(\mathbf{x}_k) \mathbf{s}$$

Instead, approximate

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \mathbf{H}_k \mathbf{s}$$

and find g_k and H_k without using derivatives

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

Classically (e.g. Newton's method),

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \nabla^2 f(\mathbf{x}_k) \mathbf{s}$$

Instead, approximate

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \mathbf{H}_k \mathbf{s}$$

and find g_k and H_k without using derivatives

- How? Interpolate f over a set of points
- $\bullet \ \ \mathsf{Geometry} \ \mathsf{of} \ \mathsf{points} \ \mathsf{good} \Longrightarrow \mathsf{interpolation} \ \mathsf{model} \ \mathsf{Taylor}\text{-}\mathsf{accurate} \Longrightarrow \mathsf{convergence}$

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Implement in trust-region method:

- 1. Build interpolation model $m_k(s)$
- 2. Minimize model inside trust region

$$oldsymbol{s}_k = rg\min_{oldsymbol{s} \in \mathbb{R}^n} m_k(oldsymbol{s}) \quad ext{s.t.} \quad \|oldsymbol{s}\|_2 \leq \Delta_k.$$

3. Accept/reject step and adjust Δ_k based on quality of new point $f(x_k + s_k)$

$$m{x}_{k+1} = \left\{ egin{array}{ll} m{x}_k + m{s}_k, & ext{if sufficient decrease,} \ m{x}_k, & ext{otherwise.} \end{array}
ight. egin{array}{ll} \longleftarrow & ext{(maybe increase Δ_k)} \ \leftarrow & ext{(decrease Δ_k)} \end{array}
ight.$$

- 4. Update interpolation set: add $x_k + s_k$ to interpolation set
- 5. If needed, ensure new interpolation set is 'good'

Theoretical Questions

- 1. What is a 'good' interpolation set/model?
- 2. What convergence/complexity guarantees do we have?

Theoretical Questions

- 1. What is a 'good' interpolation set/model?
- 2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

An interpolation model $f(x_k + s) \approx m_k(s)$ is fully linear if

$$|f(\mathbf{x}_k + \mathbf{s}) - m_k(\mathbf{s})| \le \kappa \Delta_k^2,$$

$$\|\nabla f(\mathbf{x}_k + \mathbf{s}) - \nabla m_k(\mathbf{s})\|_2 \le \kappa \Delta_k,$$

for all $\|\mathbf{s}\|_2 \leq \Delta_k$ (c.f. linear Taylor series).

Theoretical Questions

- 1. What is a 'good' interpolation set/model?
- 2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

An interpolation set is Λ -poised if

$$\max_{t} \max_{\|\boldsymbol{s}\|_{2} \leq \Delta_{k}} |\ell_{t}(\boldsymbol{x}_{k} + \boldsymbol{s})| \leq \Lambda,$$

where ℓ_t is the t-th Lagrange polynomial for the interpolation set (i.e. $\ell_t(\mathbf{y}_s) = \delta_{s,t}$).

Theorem

If the interpolation set is Λ -poised and contained in $B(\mathbf{x}_k, \Delta_k)$, then the corresponding interpolation model is fully linear with $\kappa = \mathcal{O}(\Lambda)$. (+ dependencies on n, f)

Theoretical Questions

- 1. What is a 'good' interpolation set/model?
- 2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

Convergence & worst-case complexity for nonconvex functions (match derivative-based trust-region methods).

Theorem

If f has Lipschitz continuous gradient and is bounded below, then we have $\lim_{k\to\infty}\|\nabla f(\mathbf{x}_k)\|_2=0$. Furthermore, we achieve $\|\nabla f(\mathbf{x}_k)\|_2\leq\epsilon$ for the first time after at most $\mathcal{O}(\epsilon^{-2})$ iterations. (+ dependencies on κ , f)

Outline

- 1. Unconstrained derivative-free optimization (DFO)
- 2. Convex constraints: algorithm and interpolation geometry
- 3. Application to least-squares & numerical results

Convex Constraints

Now consider the setting

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathcal{C}$,

where $\mathcal{C} \subseteq \mathbb{R}^n$ is a closed, convex set with nonempty interior.

Require:

- Strictly feasible algorithm: never evaluate f at points outside C;
- ullet Access to ${\mathcal C}$ is only through a (cheap) projection operator

Examples: \mathbb{R}^n , bound constraints, half-plane, Euclidean ball, ...

Convex Constraints

Existing work:

- Unrelaxable constraints: only for simple cases, no convergence theory
 - Bounds [Powell, 2009; Wild, 2009; Gratton et al., 2011]
 - Linear inequalities
 [Gumma, Hashim & Ali, 2014; Powell, 2015]
- Convex constraints with projections (our setting): [Conejo et al., 2013]
 - Convergence, no complexity
 - Assume models always fully linear (but how to achieve?)
- Derivative-based complexity analysis [Cartis, Gould & Toint, 2012]

Convex Constraints

Existing work:

- Unrelaxable constraints: only for simple cases, no convergence theory
 - Bounds [Powell, 2009; Wild, 2009; Gratton et al., 2011]
 - Linear inequalities
 [Gumma, Hashim & Ali, 2014; Powell, 2015]
- Convex constraints with projections (our setting): [Conejo et al., 2013]
 - Convergence, no complexity
 - Assume models always fully linear (but how to achieve?)
- Derivative-based complexity analysis

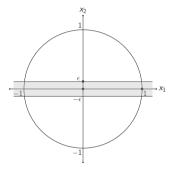
[Cartis, Gould & Toint, 2012]

Key Problem

Model-based methods are more challenging to design in the presence of unrelaxable constraints because enforcing guarantees of model quality... can be difficult. For a fixed value of κ ..., it may be impossible to obtain a fully linear model using only feasible points. [Larson, Menickelly & Wild, 2019]

Convex Constraints — The Basic Problem

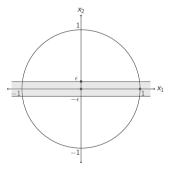
Why can't we achieve fully linear models using only feasible points?



Use $C = \{(x_1, x_2) \in \mathbb{R}^2 : |x_2| \le \epsilon\}$ with interpolation points (0, 0), (1, 0) and $(0, \epsilon)$. Get $\Lambda = \mathcal{O}(\epsilon^{-1}) \Longrightarrow$ large interpolation errors. Cannot be improved using feasible points.

Convex Constraints — The Basic Problem

Why can't we achieve fully linear models using only feasible points?



Use $C = \{(x_1, x_2) \in \mathbb{R}^2 : |x_2| \le \epsilon\}$ with interpolation points (0, 0), (1, 0) and $(0, \epsilon)$. Get $\Lambda = \mathcal{O}(\epsilon^{-1}) \Longrightarrow$ large interpolation errors. Cannot be improved using feasible points.

Note: $\Lambda = \mathcal{O}(1)$ if only consider $|\ell_t(x_k + s)|$ inside the feasible region!

Old definition of Λ -poised set:

$$\max_{t} \max_{\|\boldsymbol{s}\|_{2} \leq \Delta_{k}} |\ell_{t}(\boldsymbol{x}_{k} + \boldsymbol{s})| \leq \Lambda.$$

Gives very large values of Λ if all interpolation points must be feasible.

Old definition of Λ -poised set:

$$\max_{t} \max_{\|\boldsymbol{s}\|_{2} \leq \Delta_{k}} |\ell_{t}(\boldsymbol{x}_{k} + \boldsymbol{s})| \leq \Lambda.$$

Gives very large values of Λ if all interpolation points must be feasible.

New definition:

$$\max_{t} \max_{\substack{\boldsymbol{x}_k + \boldsymbol{s} \in \mathcal{C} \\ \|\boldsymbol{s}\|_2 \leq \Delta_k}} |\ell_t(\boldsymbol{x}_k + \boldsymbol{s})| \leq \Lambda.$$

- Only care about Lagrange polynomial size inside the feasible region (since the algorithm will never look elsewhere).
- Gives smaller values of Λ better interpolation error?

Fully linear: for all $\|\boldsymbol{s}\|_2 \leq \Delta_k$

$$|f(\mathbf{x}_k + \mathbf{s}) - m_k(\mathbf{s})| \le \kappa \Delta_k^2,$$

 $\|\nabla f(\mathbf{x}_k + \mathbf{s}) - \nabla m_k(\mathbf{s})\|_2 \le \kappa \Delta_k.$

This is stronger than we really need!

Fully linear: for all $\|\boldsymbol{s}\|_2 \leq \Delta_k$

$$|f(\mathbf{x}_k + \mathbf{s}) - m_k(\mathbf{s})| \le \kappa \Delta_k^2,$$

$$\|\nabla f(\mathbf{x}_k + \mathbf{s}) - \nabla m_k(\mathbf{s})\|_2 \le \kappa \Delta_k.$$

This is stronger than we really need! New definition adapted to C:

$$\max_{\substack{\mathbf{x}_k + \mathbf{s} \in \mathcal{C} \\ \|\mathbf{s}\|_2 \leq \Delta_k}} |f(\mathbf{x}_k + \mathbf{s}) - m_k(\mathbf{s})| \leq \kappa \Delta_k^2,$$

$$\max_{\substack{\mathbf{x}_k + \mathbf{s} \in \mathcal{C} \\ \|\mathbf{s}\|_2 \leq 1}} |(\nabla f(\mathbf{x}_k) - \nabla m_k(0))^T \mathbf{s}| \leq \kappa \Delta_k.$$

Theorem (Hough & R., 2021)

If the interpolation set is contained in $B(x_k, \Delta_k) \cap \mathcal{C}$ and [new] Λ -poised, then the corresponding <u>linear</u> interpolation model is [new] fully linear with $\kappa = \mathcal{O}(\Lambda)$.

Convex Constraints — Algorithm

Algorithm almost identical to unconstrained case:

- 1. Build interpolation model $m_k(s)$
- 2. Minimize model inside trust region

$$oldsymbol{s}_k = rg\min_{oldsymbol{s} \in \mathbb{R}^n} m_k(oldsymbol{s}) \quad ext{s.t.} \quad \|oldsymbol{s}\|_2 \leq \Delta_k \quad ext{and} \ oldsymbol{x}_k + oldsymbol{s} \in \mathcal{C}.$$

3. Accept/reject step and adjust Δ_k based on quality of new point $f(x_k + s_k)$

$$m{x}_{k+1} = \left\{ egin{array}{ll} m{x}_k + m{s}_k, & ext{if sufficient decrease,} \ m{x}_k, & ext{otherwise.} \end{array}
ight. \qquad \longleftarrow \left(ext{maybe increase } \Delta_k
ight)$$

- 4. Update interpolation set: add $x_k + s_k$ to interpolation set
- 5. If needed, ensure new interpolation set is $[new] \Lambda$ -poised

For convergence results, first need to ask

Question

What is a suitable measure of stationarity?

For convergence results, first need to ask

Question

What is a suitable measure of stationarity?

$$\pi^f(\mathbf{x}) := \begin{vmatrix} \min_{\substack{\mathbf{x} + \mathbf{s} \in \mathcal{C} \\ \|\mathbf{s}\|_2 \le 1}} \nabla f(\mathbf{x})^T \mathbf{s} \end{vmatrix}$$

For convergence results, first need to ask

Question

What is a suitable measure of stationarity?

$$\pi^f(\mathbf{x}) := \begin{vmatrix} \min_{\substack{\mathbf{x}+\mathbf{s}\in\mathcal{C} \\ \|\mathbf{s}\|_2 \leq 1}} \nabla f(\mathbf{x})^T \mathbf{s} \end{vmatrix}$$

Useful properties:

[Conn, Gould & Toint, 2000]

- $\pi^f(x) \geq 0$ for all x
- $\pi^f(x^*) = 0$ if and only if x^* is a KKT point
- If $C = \mathbb{R}^n$, then $\pi^f(\mathbf{x}) = \|\nabla f(\mathbf{x})\|_2$
- $\pi^f(x)$ is Lipschitz continuous in x (if ∇f is Lipschitz) [Cartis, Gould & Toint, 2012]

For convergence results, first need to ask

Question

What is a suitable measure of stationarity?

$$\pi^f(\mathbf{x}) := \begin{vmatrix} \min_{\substack{\mathbf{x}+\mathbf{s}\in\mathcal{C} \\ \|\mathbf{s}\|_2 \leq 1}} \nabla f(\mathbf{x})^T \mathbf{s} \end{vmatrix}$$

Useful properties:

[Conn, Gould & Toint, 2000]

- $\pi^f(x) \geq 0$ for all x
- $\pi^f(\mathbf{x}^*) = 0$ if and only if \mathbf{x}^* is a KKT point
- If $C = \mathbb{R}^n$, then $\pi^f(\mathbf{x}) = \|\nabla f(\mathbf{x})\|_2$
- $\pi^f(x)$ is Lipschitz continuous in x (if ∇f is Lipschitz) [Cartis, Gould & Toint, 2012]
- If m_k is [new] fully linear, then $|\pi^f(\mathbf{x}_k) \pi^{m_k}(\mathbf{x}_k)| \le \kappa \Delta_k$ [Hough & R., 2021]

We can match the unconstrained convergence & complexity results:

Theorem (Hough & R., 2021)

If f has Lipschitz continuous gradient and is bounded below, then we have $\lim_{k\to\infty}\pi^f(\mathbf{x}_k)=0$. Furthermore, we achieve $\pi^f(\mathbf{x}_k)\leq\epsilon$ for the first time after at most $\mathcal{O}(\epsilon^{-2})$ iterations.

We can match the unconstrained convergence & complexity results:

Theorem (Hough & R., 2021)

If f has Lipschitz continuous gradient and is bounded below, then we have $\lim_{k\to\infty}\pi^f(\mathbf{x}_k)=0$. Furthermore, we achieve $\pi^f(\mathbf{x}_k)\leq\epsilon$ for the first time after at most $\mathcal{O}(\epsilon^{-2})$ iterations.

Requires the existence of procedures to:

- Verify if a model is fully linear
- If a model is not fully linear, change the interpolation set to make it fully linear

For our new definition of Λ -poisedness, can use (almost) the same approach as for unconstrained case.

Outline

- 1. Unconstrained derivative-free optimization (DFO)
- 2. Convex constraints: algorithm and interpolation geometry
- 3. Application to least-squares & numerical results

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k) + J(x_k)s$$

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k)+J(x_k)s$$

Derivative-Free Gauss-Newton

Jacobian not available: use

$$\boldsymbol{m}_k(\boldsymbol{s}) = \boldsymbol{r}(\boldsymbol{x}_k) + \boldsymbol{J}_k \boldsymbol{s}$$

Find J_k using linear interpolation [Cartis & R., 2019]

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k)+J(x_k)s$$

Derivative-Free Gauss-Newton

• Jacobian not available: use

$$\boldsymbol{m}_k(\boldsymbol{s}) = \boldsymbol{r}(\boldsymbol{x}_k) + \boldsymbol{J}_k \boldsymbol{s}$$

Find J_k using linear interpolation [Cartis & R., 2019]

In both cases, get a local quadratic model

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = \frac{1}{2} \|\boldsymbol{m}_k(\boldsymbol{s})\|_2^2$$

New: Linear interpolation with feasible points gives fully linear quadratic models

Least-Squares Implementation

New changes implemented in state-of-the-art solver DFO-LS

[Cartis et al., 2019]

- Use FISTA to compute search direction (subject to feasibility & trust-region constraint) + Dykstra's algorithm to project onto $B(\mathbf{x}_k, \Delta_k) \cap \mathcal{C}$
- Github: numerical algorithms group/dfols

Test on collection of 58 low-dimensional least-squares problems with box/ball/halfspace constraints.

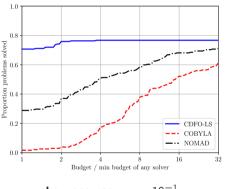
Few codes to test against (none using the least-squares structure)!.

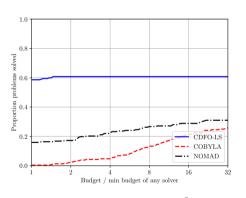
- NOMAD: direct search DFO, model constraints using extreme barrier (i.e. $f(x) = +\infty$ if $x \notin \mathcal{C}$) [Le Digabel, 2011]
- COBYLA: model-based DFO with (derivative-free) inequality constraints

[Powell, 1994]

Numerical Results

Performance profiles at different accuracy levels





Low accuracy, $au=10^{-1}$

High accuracy, $\tau = 10^{-5}$

[% problems solved vs. # objective evals; higher is better]

Conclusions & Future Work

Conclusions

- General model-based DFO method for convex-constrained problems
- Match/generalize existing convergence & complexity results
- Developed comprehensive new theory of Λ-poisedness/full linearity
 - Currently only for (composite) linear interpolation
- New software for least-squares problems

Future Work

- Second-order theory
- Generalize interpolation theory to quadratic interpolation

[arXiv:2111.05443, Github: numerical algorithms group/dfols]

References i

- C. CARTIS, J. FIALA, B. MARTEAU, AND L. ROBERTS, *Improving the flexibility and robustness of model-based derivative-free optimization solvers*, ACM Transactions on Mathematical Software, 45 (2019), pp. 1–41.
- C. Cartis, N. I. M. Gould, and P. L. Toint, An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity, IMA Journal of Numerical Analysis, 32 (2012), pp. 1662–1695.
- C. Cartis and L. Roberts, *A derivative-free Gauss-Newton method*, Mathematical Programming Computation, 11 (2019), pp. 631–674.
- P. CONEJO, E. KARAS, L. PEDROSO, A. RIBEIRO, AND M. SACHINE, Global convergence of trust-region algorithms for convex constrained minimization without derivatives, Applied Mathematics and Computation, 220 (2013), pp. 324–330.
- $A.\ R.\ Conn,\ N.\ I.\ M.\ Gould,\ And\ P.\ L.\ Toint,\ \textit{Trust-Region Methods},\ vol.\ 1\ of\ MPS-SIAM\ Series\ on\ Optimization,\ MPS/SIAM,\ Philadelphia,\ 2000.$
- A. R. Conn, K. Scheinberg, and L. N. Vicente, *Introduction to Derivative-Free Optimization*, vol. 8 of MPS-SIAM Series on Optimization, MPS/SIAM, Philadelphia, 2009.

References ii

- S. Gratton, P. L. Toint, and A. Tröltzsch, An active-set trust-region method for derivative-free nonlinear bound-constrained optimization, Optimization Methods and Software, 26 (2011), pp. 873–894.
- E. A. E. Gumma, M. H. A. Hashim, and M. M. Ali, *A derivative-free algorithm for linearly constrained optimization problems*, Computational Optimization and Applications, 57 (2014), pp. 599–621.
- M. HOUGH AND L. ROBERTS, Model-based derivative-free methods for convex-constrained optimization, arXiv preprint arXiv:2111.05443, (2021).
- J. LARSON, M. MENICKELLY, AND S. M. WILD, *Derivative-free optimization methods*, Acta Numerica, 28 (2019), pp. 287–404.
- S. Le Digabel, *Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm*, ACM Transactions on Mathematical Software, 37 (2011).
- M. J. D. POWELL, A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, Springer Netherlands, Dordrecht, 1994, pp. 51–67.
- ——, On trust region methods for unconstrained minimization without derivatives, Mathematical Programming, 97 (2003), pp. 605–623.

References iii

- ———, The BOBYQA algorithm for bound constrained optimization without derivatives, Tech. Rep. DAMTP 2009/NA06, University of Cambridge, 2009.
- ——, On fast trust region methods for quadratic models with linear constraints, Mathematical Programming Computation, 7 (2015), pp. 237–267.
- $S.\ M.\ Wildows,$ Derivative-Free Optimization Algorithms for Computationally Expensive Functions, PhD thesis, Cornell University, 2009.