Scalable Derivative-Free Optimization for Nonlinear Least-Squares Problems

With Coralia Cartis & Tyler Ferguson (Oxford)

Lindon Roberts, Mathematical Sciences Institute, ANU (lindon.roberts@anu.edu.au)

5th Workshop on Optimisation, Metric Bounds, Approximation and Transversality 1 December 2020

- 1. Derivative-free optimization for least-squares problems
- 2. Scalability bottleneck
- 3. Sketching techniques
- 4. Numerical results

 $\min_{x\in\mathbb{R}^d}f(x)$

• Objective f nonlinear, nonconvex, structure unknown

Derivative-Free Optimization

 $\min_{x\in\mathbb{R}^d}f(x)$

- Objective f nonlinear, nonconvex, structure unknown
- Standard methods locally approximate f by quadratic models (e.g. Taylor series)
- How to calculate derivatives of f to build model?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation [aka backpropagation]

Derivative-Free Optimization

 $\min_{x\in\mathbb{R}^d}f(x)$

- Objective f nonlinear, nonconvex, structure unknown
- Standard methods locally approximate f by quadratic models (e.g. Taylor series)
- How to calculate derivatives of f to build model?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation [aka backpropagation]
- Difficulties when function evaluation is
 - 'Black-box'
 - Noisy
 - Computationally expensive

Derivative-Free Optimization

 $\min_{x\in\mathbb{R}^d}f(x)$

- Objective f nonlinear, nonconvex, structure unknown
- Standard methods locally approximate f by quadratic models (e.g. Taylor series)
- How to calculate derivatives of f to build model?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation [aka backpropagation]
- Difficulties when function evaluation is
 - 'Black-box'
 - Noisy
 - Computationally expensive
- Alternative derivative-free optimization (DFO) [aka "zero-order methods"]
 - Applications in finance, climate, image analysis, data science, engineering, ...

Model-Based DFO — Basic Ideas

Many approaches: model-based, direct search, Nelder-Mead, ...

• Classically (e.g. Newton's method),

$$f(x_k+s) \approx m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$$

Model-Based DFO — Basic Ideas

Many approaches: model-based, direct search, Nelder-Mead, ...

• Classically (e.g. Newton's method),

$$f(x_k+s) \approx m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$$

• Instead, approximate

$$f(x_k+s) \approx m_k(s) = f(x_k) + \frac{g_k}{2} s + \frac{1}{2} s^T H_k s$$

Model-Based DFO — Basic Ideas

Many approaches: model-based, direct search, Nelder-Mead, ...

• Classically (e.g. Newton's method),

$$f(x_k+s) \approx m_k(s) = f(x_k) + \nabla f(x_k)^T s + \frac{1}{2} s^T \nabla^2 f(x_k) s$$

• Instead, approximate

$$f(x_k+s) \approx m_k(s) = f(x_k) + \mathbf{g}_k^T s + \frac{1}{2} s^T \mathbf{H}_k s$$

- Find g_k and H_k without using derivatives: interpolate f over a set of points
- Geometry of points good \implies interpolation model accurate \implies convergence

[Conn, Powell, Scheinberg, Vicente, ...]

$$\min_{x\in\mathbb{R}^d}f(x)=\frac{1}{2}\|r(x)\|_2^2,\qquad r(x)\in\mathbb{R}^n$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

$$\min_{x\in\mathbb{R}^d}f(x)=\frac{1}{2}\|r(x)\|_2^2,\qquad r(x)\in\mathbb{R}^n$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

• Linearize r at x_k using Jacobian

 $r(x_k+s)\approx M_k(s)=r(x_k)+J(x_k)s$

$$\min_{x\in\mathbb{R}^d}f(x)=\frac{1}{2}\|r(x)\|_2^2,\qquad r(x)\in\mathbb{R}^n$$

Classical Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s)\approx M_k(s)=r(x_k)+J(x_k)s$$

Derivative-Free Gauss-Newton

• Jacobian not available: use

 $M_k(s) = r(x_k) + \mathbf{J}_k s$

• Find J_k by interpolation — maintain a cloud of points which moves towards solution (with good geometry)

$$\min_{x\in\mathbb{R}^d}f(x)=\frac{1}{2}\|r(x)\|_2^2,\qquad r(x)\in\mathbb{R}^n$$

Classical Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx M_k(s) = r(x_k) + J(x_k)s$$

Derivative-Free Gauss-Newton

• Jacobian not available: use

 $M_k(s) = r(x_k) + \mathbf{J}_k s$

• Find J_k by interpolation — maintain a cloud of points which moves towards solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

$$f(x_k+s)\approx m_k(s)=\frac{1}{2}\|M_k(s)\|_2^2$$

DFO for Least-Squares — Algorithm

Implement in trust-region method:

1. Build interpolation model

$$f(x_k+s)pprox m_k(s)\coloneqq rac{1}{2}\|M_k(s)\|_2^2.$$

2. Minimize model inside trust region

$$s_k = rgmin_{s \in \mathbb{R}^d} m_k(s) \hspace{1em} ext{s.t.} \hspace{1em} \|s\|_2 \leq \Delta_k.$$

- 3. Evaluate $f(x_k + s_k)$, check sufficient decrease, select x_{k+1} and Δ_{k+1}
- Update interpolation set: add x_k + s_k and move points to ensure good geometry (if needed)
 ← requires calculation of Lagrange polynomials

Implemented in DFO-LS package (Github: numerical algorithms group/dfols)

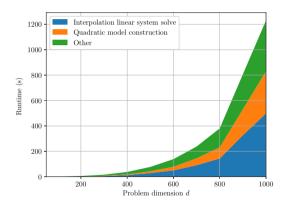
(Also have software for general objectives using quadratic interpolation)

DFO methods are well-known not to scale well (i.e. *n* or *d* large)
 – e.g. data science, weather forecasting/data assimilation, ...

Where is the issue for model-based DFO?

Scalability

Runtime of DFO-LS on generalized Rosenbrock function (n = 2d):



Per-iteration linear algebra costs:

- Interpolation linear system = $O(d^3 + nd^2)$
- Form quadratic model = $O(nd^2)$
- Subproblem, geometry, ... $= \mathcal{O}(d^3)$

(d variables, n residuals)

Goal

Can we construct a method which is more efficient in terms of runtime?

Key idea: dimensionality reduction in n

- Here, try to improve performance in the case of 'big data' $(n
 ightarrow \infty)$
- (also studying dimensionality reduction in *d*-dimensional variable space in other work)
- Use ideas from randomized numerical linear algebra (specifically sketching)

Sketching

Inspired by randomized methods for linear least-squares

$$\min_{x \in \mathbb{R}^d} \|Ax - b\|_2^2, \qquad A \in \mathbb{R}^{n \times d} \text{ full rank, } n \gg d.$$

Standard methods (e.g. QR factorization) have cost $O(nd^2)$.

Instead, generate random matrix $S \in \mathbb{R}^{m \times n}$ $(m \ll n)$ and solve the smaller $m \times d$ problem

$$\min_{x'\in\mathbb{R}^d}\|(SA)x'-(Sb)\|_2^2$$

Good choices of **S**?

- Easy to construct SA and Sb (needs to be faster than $\mathcal{O}(nd^2)$!)
- Solution to sketched problem close to solution of original problem
 - **S** approximately preserves inner products in $col(A) \oplus span\{b\}$

Sketching

Common choices for *S* include:

- Gaussian matrix (each entry iid normal)
- Subsampling matrix (each row is random coordinate vector)
- Hashing matrix (each column has a small number of randomly-placed ± 1 entries)

The last two choices are sparse, so matrix multiplication is cheap. Typical results look like...

Theorem (Woodruff, 2014)

Suppose S is a hashing matrix with $m = O(d^2/\epsilon^2 \cdot poly(\log(d/\epsilon)))$, and x' is the minimizer of the sketched LLS problem. [Note: m is independent of n]

Then x' can be found in $\mathcal{O}(nnz(A) + poly(d/\epsilon))$ time and

$$\|Ax'-b\|_2 \leq (1+\epsilon)\min_{x\in\mathbb{R}^d}\|Ax-b\|_2.$$

```
with probability at least 0.99.
```

Sketching ideas are gaining lots of attention, particularly in algorithms for data science:

- Linear least-squares [Drineas et al (2006), Clarkson & Woodruff (2017)]
- Matrix factorizations (e.g. randomized SVD) [Mahoney (2011), Halko, Martinsson & Tropp (2011)]
- BFGS [Gower, Goldfarb, & Richtárik (2016)]
- Newton's Method [Roosta-Khorasani & Mahoney (2019), Berahas, Bollapragada & Nocedal (2020)]
- Nonlinear least-squares

[Ergen, Candès & Pilanci (2019)]

and more ...

Question

Does the success of sketching apply to DFO?

We know that DFO-LS is slow because of the cost of solving the interpolation system.

Question

Can sketching be used to reduce the linear algebra cost of DFO?

Interpolation system:

Given iterate x_k and points y_1, \ldots, y_d , build the linear model $M_k(s) = r(x_k) + J_k s$ by solving

$$\begin{bmatrix} (y_1 - x_k)^T \\ \vdots \\ (y_d - x_k)^T \end{bmatrix} J_k^T = \begin{bmatrix} (r(y_1) - r(x_k))^T \\ \vdots \\ (r(y_1) - r(x_k))^T \end{bmatrix}$$

with cost $O(d^3 + nd^2)$ [factorization plus *n* back-substitutions].

Sketching for DFO II

Apply sketching to the interpolation system:

At each iteration, generate random S_k and solve the smaller system ($m \ll n$ RHS)

$$\begin{bmatrix} (y_1 - x_k)^T \\ \vdots \\ (y_d - x_k)^T \end{bmatrix} (\mathbf{S}_k J_k)^T = \begin{bmatrix} (r(y_1) - r(x_k))^T \\ \vdots \\ (r(y_1) - r(x_k))^T \end{bmatrix} \mathbf{S}_k^T.$$

Then, we get a linear model for $S_k r(\cdot) : \mathbb{R}^d \to \mathbb{R}^m$:

$$S_k r(x_k + s) \approx \widetilde{M}_k(s) = S_k r(x_k) + (S_k J_k)s,$$

giving the local quadratic model

$$f(x_k+s)pprox \widetilde{m}_k(s)=rac{1}{2}\|\widetilde{M}_k(s)\|^2.$$

Sketching for DFO III

Question

Does this reduce the linear algebra cost of DFO?

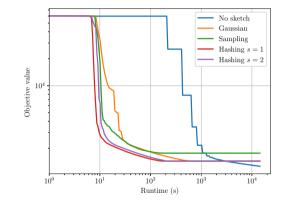
Exactly the same DFO algorithm, but using sketched interpolation system:

	Original	Gaussian	Sampling	Hashing
Form S_k		$\mathcal{O}(mn)$	$\mathcal{O}(m)$	$\mathcal{O}(nd)$
Form sketched system	—	$\mathcal{O}(mnd)$	$\mathcal{O}(nd)$	$\mathcal{O}(nd)$
Solve interpolation system	$\mathcal{O}(d^3 + nd^2)$	$\mathcal{O}(d^3 + md^2)$	$\mathcal{O}(d^3 + md^2)$	
Form quadratic model	$\mathcal{O}(nd^2)$	$\mathcal{O}(md^2)$	$\mathcal{O}(md^2)$	
Subproblem, geometry,	$\mathcal{O}(d^3)$	$\mathcal{O}(d^3)$	$\mathcal{O}(d^3)$	
Total (if $n \gg d$)	$\mathcal{O}(\mathbf{nd}^2)$	$\mathcal{O}(mnd)$	$\mathcal{O}(\mathbf{nd}+\mathbf{d}^3+\mathbf{md}^2)$	

In the 'big data' regime $(n \to \infty)$, sampling/hashing reduces cost from $\mathcal{O}(nd^2)$ to $\mathcal{O}(nd)$.

Numerical Results

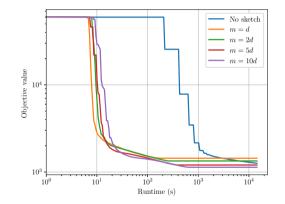
Compare on a large problem from the CUTEst collection (MNISTS0 with d = 494, n = 60000)



Objective value vs. runtime (m = d **for all sketches, 4hr timeout)**

Numerical Results

What difference does *m* make? (MNISTS0 with d = 494, n = 60000)



Objective value vs. runtime (hashing s = 1 for all, 4hr timeout)

Conclusion & Future Work

Conclusions

- Model construction cost a key barrier to scalability of model-based DFO
- Modify model construction by using sketched interpolation system
- In big data regime, linear algebra cost reduces from $\mathcal{O}(nd^2)$ to $\mathcal{O}(nd)$
- Gives improved runtime performance in practice

ICML workshop paper available at arXiv:2007.13243

Future Work

- Convergence guarantees
- Adaptive sketching (e.g. vary *m* as algorithm progresses)
- Dimensionality reduction in variable space (coming soon, see AustMS talk...)

References

Coralia Cartis, Tyler Ferguson, and Lindon Roberts.
 Scalable derivative-free optimization for nonlinear least-squares problems.
 In Workshop on "Beyond first-order methods in ML systems" at the 37th International Conference on Machine Learning, 2020.

Coralia Cartis, Jan Fiala, Benjamin Marteau, and Lindon Roberts. Improving the flexibility and robustness of model-based derivative-free optimization solvers.

ACM Transactions on Mathematical Software, 45(3):32:1–32:41, 2019.

Coralia Cartis and Lindon Roberts.

A derivative-free Gauss-Newton method.

Mathematical Programming Computation, 11(4):631–674, 2019.