
Scalable Derivative-Free Optimization for Nonlinear

Least-Squares Problems

With Coralia Cartis & Tyler Ferguson (Oxford)

Lindon Roberts, Mathematical Sciences Institute, ANU (lindon.roberts@anu.edu.au)

5th Workshop on Optimisation, Metric Bounds, Approximation and Transversality

1 December 2020



Outline

1. Derivative-free optimization for least-squares problems

2. Scalability bottleneck

3. Sketching techniques

4. Numerical results

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 1



Derivative-Free Optimization

min
x∈Rd

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation [aka backpropagation]

� Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Applications in finance, climate, image analysis, data science, engineering, ...

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Derivative-Free Optimization

min
x∈Rd

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation [aka backpropagation]

� Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Applications in finance, climate, image analysis, data science, engineering, ...

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Derivative-Free Optimization

min
x∈Rd

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation [aka backpropagation]

� Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Applications in finance, climate, image analysis, data science, engineering, ...

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Derivative-Free Optimization

min
x∈Rd

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation [aka backpropagation]

� Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Applications in finance, climate, image analysis, data science, engineering, ...

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Model-Based DFO — Basic Ideas

Many approaches: model-based, direct search, Nelder-Mead, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

� Find gk and Hk without using derivatives: interpolate f over a set of points

� Geometry of points good =⇒ interpolation model accurate =⇒ convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 3



Model-Based DFO — Basic Ideas

Many approaches: model-based, direct search, Nelder-Mead, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

� Find gk and Hk without using derivatives: interpolate f over a set of points

� Geometry of points good =⇒ interpolation model accurate =⇒ convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 3



Model-Based DFO — Basic Ideas

Many approaches: model-based, direct search, Nelder-Mead, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

� Find gk and Hk without using derivatives: interpolate f over a set of points

� Geometry of points good =⇒ interpolation model accurate =⇒ convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 3



DFO for Least-Squares — Basic Framework

min
x∈Rd

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rn

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk + s) ≈ Mk(s) = r(xk) + J(xk)s

� Jacobian not available: use

Mk(s) = r(xk) + Jks

� Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖Mk(s)‖2

2

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Basic Framework

min
x∈Rd

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rn

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk + s) ≈ Mk(s) = r(xk) + J(xk)s

� Jacobian not available: use

Mk(s) = r(xk) + Jks

� Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖Mk(s)‖2

2

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Basic Framework

min
x∈Rd

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rn

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk + s) ≈ Mk(s) = r(xk) + J(xk)s

� Jacobian not available: use

Mk(s) = r(xk) + Jks

� Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖Mk(s)‖2

2

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Basic Framework

min
x∈Rd

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rn

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk + s) ≈ Mk(s) = r(xk) + J(xk)s

� Jacobian not available: use

Mk(s) = r(xk) + Jks

� Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖Mk(s)‖2

2

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Algorithm

Implement in trust-region method:

1. Build interpolation model

f (xk + s) ≈ mk(s) :=
1

2
‖Mk(s)‖2

2.

2. Minimize model inside trust region

sk = arg min
s∈Rd

mk(s) s.t. ‖s‖2 ≤ ∆k .

3. Evaluate f (xk + sk), check sufficient decrease, select xk+1 and ∆k+1

4. Update interpolation set: add xk + sk and move points to ensure good geometry (if needed)

← requires calculation of Lagrange polynomials

Implemented in DFO-LS package (Github: numerical algorithms group/dfols)

(Also have software for general objectives using quadratic interpolation)

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 5



Scalability

� DFO methods are well-known not to scale well (i.e. n or d large)

– e.g. data science, weather forecasting/data assimilation, ...

Where is the issue for model-based DFO?

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 6



Scalability

Runtime of DFO-LS on generalized Rosenbrock

function (n = 2d):

200 400 600 800 1000
Problem dimension d

0

200

400

600

800

1000

1200

R
u
n
ti
m
e
(s
)

Interpolation linear system solve

Quadratic model construction

Other
Per-iteration linear algebra costs:

� Interpolation linear system = O(d3 + nd2)

� Form quadratic model = O(nd2)

� Subproblem, geometry, ... = O(d3)

(d variables, n residuals)

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 7



Problem

Goal

Can we construct a method which is more efficient in terms of runtime?

Key idea: dimensionality reduction in n

� Here, try to improve performance in the case of ‘big data’ (n→∞)

� (also studying dimensionality reduction in d-dimensional variable space in other work)

� Use ideas from randomized numerical linear algebra (specifically sketching)

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 8



Sketching

Inspired by randomized methods for linear least-squares

min
x∈Rd
‖Ax − b‖2

2, A ∈ Rn×d full rank, n� d .

Standard methods (e.g. QR factorization) have cost O(nd2).

Instead, generate random matrix S ∈ Rm×n (m� n) and solve the smaller m × d problem

min
x′∈Rd

‖(SA)x ′ − (Sb)‖2
2.

Good choices of S?

� Easy to construct SA and Sb (needs to be faster than O(nd2)!)

� Solution to sketched problem close to solution of original problem

– S approximately preserves inner products in col(A)⊕ span{b}

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 9



Sketching

Common choices for S include:

� Gaussian matrix (each entry iid normal)

� Subsampling matrix (each row is random coordinate vector)

� Hashing matrix (each column has a small number of randomly-placed ±1 entries)

The last two choices are sparse, so matrix multiplication is cheap. Typical results look like...

Theorem (Woodruff, 2014)

Suppose S is a hashing matrix with m = O(d2/ε2 · poly(log(d/ε))), and x ′ is the minimizer of

the sketched LLS problem. [Note: m is independent of n]

Then x ′ can be found in O(nnz(A) + poly(d/ε)) time and

‖Ax ′ − b‖2 ≤ (1 + ε) min
x∈Rd
‖Ax − b‖2.

with probability at least 0.99.

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 10



Use of Sketching

Sketching ideas are gaining lots of attention, particularly in algorithms for data science:

� Linear least-squares [Drineas et al (2006), Clarkson & Woodruff (2017)]

� Matrix factorizations (e.g. randomized SVD) [Mahoney (2011), Halko, Martinsson & Tropp (2011)]

� BFGS [Gower, Goldfarb, & Richtárik (2016)]

� Newton’s Method [Roosta-Khorasani & Mahoney (2019), Berahas, Bollapragada & Nocedal (2020)]

� Nonlinear least-squares [Ergen, Candès & Pilanci (2019)]

and more...

Question

Does the success of sketching apply to DFO?

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 11



Sketching for DFO I

We know that DFO-LS is slow because of the cost of solving the interpolation system.

Question

Can sketching be used to reduce the linear algebra cost of DFO?

Interpolation system:

Given iterate xk and points y1, . . . , yd , build the linear model Mk(s) = r(xk) + Jks by solving(y1 − xk)T

...

(yd − xk)T

 JTk =

(r(y1)− r(xk))T

...

(r(y1)− r(xk))T

 ,
with cost O(d3 + nd2) [factorization plus n back-substitutions].

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 12



Sketching for DFO II

Apply sketching to the interpolation system:

At each iteration, generate random Sk and solve the smaller system (m� n RHS)(y1 − xk)T

...

(yd − xk)T

 (SkJk)T =

(r(y1)− r(xk))T

...

(r(y1)− r(xk))T

ST
k .

Then, we get a linear model for Sk r(·) : Rd → Rm:

Sk r(xk + s) ≈ M̃k(s) = Sk r(xk) + (SkJk)s,

giving the local quadratic model

f (xk + s) ≈ m̃k(s) =
1

2
‖M̃k(s)‖2.

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 13



Sketching for DFO III

Question

Does this reduce the linear algebra cost of DFO?

Exactly the same DFO algorithm, but using sketched interpolation system:

Original Gaussian Sampling Hashing

Form Sk — O(mn) O(m) O(nd)

Form sketched system — O(mnd) O(nd) O(nd)

Solve interpolation system O(d3 + nd2) O(d3 + md2) O(d3 + md2)

Form quadratic model O(nd2) O(md2) O(md2)

Subproblem, geometry, ... O(d3) O(d3) O(d3)

Total (if n� d) O(nd 2) O(mnd) O(nd + d
3 +md

2)

In the ‘big data’ regime (n→∞), sampling/hashing reduces cost from O(nd2) to O(nd).

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 14



Numerical Results

Compare on a large problem from the CUTEst collection (MNISTS0 with d = 494, n = 60 000)

100 101 102 103 104

Runtime (s)

104

O
b
je
ct
iv
e
va
lu
e

No sketch

Gaussian

Sampling

Hashing s = 1

Hashing s = 2

Objective value vs. runtime (m = d for all sketches, 4hr timeout)

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 15



Numerical Results

What difference does m make? (MNISTS0 with d = 494, n = 60 000)

100 101 102 103 104

Runtime (s)

103

104

O
b
je
ct
iv
e
va
lu
e

No sketch

m = d

m = 2d

m = 5d

m = 10d

Objective value vs. runtime (hashing s = 1 for all, 4hr timeout)

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 16



Conclusion & Future Work

Conclusions

� Model construction cost a key barrier to scalability of model-based DFO

� Modify model construction by using sketched interpolation system

� In big data regime, linear algebra cost reduces from O(nd2) to O(nd)

� Gives improved runtime performance in practice

ICML workshop paper available at arXiv:2007.13243

Future Work

� Convergence guarantees

� Adaptive sketching (e.g. vary m as algorithm progresses)

� Dimensionality reduction in variable space (coming soon, see AustMS talk...)

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 17



References

Coralia Cartis, Tyler Ferguson, and Lindon Roberts.

Scalable derivative-free optimization for nonlinear least-squares problems.

In Workshop on “Beyond first-order methods in ML systems” at the 37th International

Conference on Machine Learning, 2020.

Coralia Cartis, Jan Fiala, Benjamin Marteau, and Lindon Roberts.

Improving the flexibility and robustness of model-based derivative-free

optimization solvers.

ACM Transactions on Mathematical Software, 45(3):32:1–32:41, 2019.

Coralia Cartis and Lindon Roberts.

A derivative-free Gauss-Newton method.

Mathematical Programming Computation, 11(4):631–674, 2019.

Scalable DFO for Nonlinear Least-Squares — Lindon Roberts (lindon.roberts@anu.edu.au) 18


