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Nonlinear Optimisation

Interested in nonlinear, nonconvex optimisation

min
x∈Rn

f (x),

where objective function f : Rn → R.

� Ubiquitous in quantitative disciplines, but very difficult to solve in general

� No information about structure of f , except assumed smoothness

– Problem constants (e.g. bounds on derivatives) unknown

– Allow inaccurate evaluation of f , e.g. stochastic noise, iterative process

� Unconstrained, but software allows bounds ai ≤ xi ≤ bi
� Seek local minimiser: f (x∗) ≤ f (x) for all x close to x

∗ (not all x ∈ Rn)

– Actually, seek (approximate) stationary point ‖∇f (x∗)‖2 ≤ ε
� Gap between ‘textbook’ algorithms and state-of-the-art performance is large
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Nonlinear Optimisation

Basic trust-region method:

� Approximate f near xk with quadratic model

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)>s +
1

2
s
>∇2f (xk)s

� Minimise model (set ∇mk = 0) gives Newton’s method

xk+1 = xk + sk where [∇2f (xk)]sk = −∇f (xk)

but may not converge!

� One way to guarantee convergence: restrict the step size

sk = arg min
s∈Rn

mk(s) subject to ‖s‖2 ≤ ∆k

=⇒ ‘trust region’ subproblem – specialised algorithms exist
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Nonlinear Optimisation

Basic iterative method:

1. Given xk and ∆k > 0, evaluate f (xk), ∇f (xk), ∇2f (xk) and construct model mk

2. Solve trust region subproblem to get step sk

3. Evaluate f (xk + sk) and determine quality of step

ρk :=
actual decrease

predicted decrease
=

f (xk)− f (xk + sk)

mk(0)−mk(sk)

4. Accept/reject step and update ∆k :
� If ρk ≥ 0.7, set xk+1 = xk + sk and ∆k+1 = 2∆k [very successful]

� If ρk ∈ [0.1, 0.7), set xk+1 = xk + sk and ∆k+1 = ∆k [successful]

� If ρk < 0.1, set xk+1 = xk and ∆k+1 = ∆k/2 [unsuccessful]

Standard algorithm with theoretical guarantees (e.g. limk→∞ ‖∇f (xk)‖2 = 0)
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Derivative-Free Optimisation

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)>s +
1

2
s
>∇2f (xk)s

� How to calculate derivatives of f in practice?

– Write code by hand

– Finite differences

– Algorithmic differentiation

� Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

� Alternative — derivative-free optimisation (DFO)

� Many applications: finance, climate, engineering design, experimental design, . . .
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Model-Based DFO — Basic Ideas

Many different approaches: model-based, Nelder-Mead, pattern/direct search, genetic

algorithms, ...

� Previously,

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)>s +
1

2
s
>∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
>
s +

1

2
s
>Hks

� Find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Same trust region approach as before

[Conn, Powell, Scheinberg, Toint, Vicente, ...]

DFO for least-squares — Lindon Roberts (lindon.roberts@anu.edu.au) 7



Model-Based DFO — Basic Ideas

Many different approaches: model-based, Nelder-Mead, pattern/direct search, genetic

algorithms, ...

� Previously,

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)>s +
1

2
s
>∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
>
s +

1

2
s
>Hks

� Find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Same trust region approach as before

[Conn, Powell, Scheinberg, Toint, Vicente, ...]

DFO for least-squares — Lindon Roberts (lindon.roberts@anu.edu.au) 7



Example: Model-Based DFO

1. Choose interpolation set
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Example: Model-Based DFO

2. Interpolate & minimise...
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Example: Model-Based DFO

3. Add new point to interpolation set (replace a bad point)
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Example: Model-Based DFO

4. Repeat with new interpolation set & model
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Model-Based DFO — Theory

What about theory?

� If geometry of interpolation points is good (in a specific sense), then model has

same accuracy order as first-order Taylor series

|f (xk + s)−mk(s)| ≤ κf∆2
k ,

‖∇f (xk + s)−∇mk(s)‖2 ≤ κg∆k ,

for all ‖s‖2 ≤ ∆k .

� Need to modify algorithm to fix geometry, when needed

� Get similar convergence results as derivative-based methods

– Global convergence to stationary points: limk→∞ ‖∇f (xk)‖2 = 0

– Worst-case complexity: need at most O(ε−2) iterations to get ‖∇f (xk)‖2 ≤ ε

DFO for least-squares — Lindon Roberts (lindon.roberts@anu.edu.au) 9



Model-Based DFO — Theory

Geometry Requirement

� Interpolation set is {y0, . . . , yp}, usually with y0 := xk

� Build model by imposing f (y t) = mk(y t − xk) for all t

� Lagrange polynomials: `t(y s) = δs,t for all s, t

� ‘Good’ geometry if all `t small ⇔ interpolation problem well-conditioned

Theorem (Conn, Scheinberg & Vicente, 2008)

If |`t(xk + s)| ≤ C1 for all ‖s‖2 ≤ ∆k and all ‖y t − xk‖2 ≤ C2∆k , then the

interpolation model is “fully linear” (Taylor-accurate) inside the trust region.

Simple algorithms can check/ensure these conditions (maybe moving some points).
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Model-Based DFO — Algorithm

Basic model-based DFO method:

1. Given xk and ∆k > 0, construct interpolation model mk

2. Solve trust region subproblem to get step sk

3. Evaluate f (xk + sk) and determine quality of step

ρk :=
actual decrease

predicted decrease
=

f (xk)− f (xk + sk)

mk(0)−mk(sk)

4. Accept/reject step and update ∆k :

� If ρk ≥ 0.7, set xk+1 = xk + sk and ∆k+1 = 2∆k , add xk+1 to model [very successful]

� If ρk ∈ [0.1, 0.7), set xk+1 = xk + sk and ∆k+1 = ∆k , add xk+1 to model [successful]

� If ρk < 0.1 and model not fully linear, set xk+1 = xk , ∆k+1 = ∆k and make model

fully linear [model-improving]

� If ρk < 0.1 and model fully linear, set xk+1 = xk and ∆k+1 = ∆k/2 [unsuccessful]
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DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖22, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearise r at xk using Jacobian

r(xk +s) ≈ mk(s) = r(xk)+J(xk)s

� Approximation: ∇2f (xk) =

J(xk)>J(xk) +
∑m

i=1 ri (xk)∇2ri (xk)

� Jacobian not available, use

mk(s) = r(xk) + Jks

� Find Jk by interpolation

In both cases, solve trust region subproblem with simplified quadratic model

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖22
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DFO Gauss-Newton

Previous works use quadratic models for r(x) [Zhang, Conn & Scheinberg (2010), Wild (2017)]

Advantages of linear models

� Match global convergence guarantees

� Fewer evaluations of r(x) to build first model

� Lower linear algebra cost (≈ 7× speedup) and improved scalability

� Explicit connection between geometry and linear algebra

– When adding interpolation point xk+1, delete point y t with large |`t(xk+1)|
– Gives rank-1 update of interpolation matrix A, hence

A−1new = A−1old +
1

σt
utv

>
t where σt = `t(xk+1)
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DFO-LS

DFO-LS (Derivative-Free Optimisation for Least-Squares)

Open-source Python package (NLLS with bounds)

– Github: numerical algorithms group/dfols

Key Features:

� Flexible model construction

=⇒ enables both reduced initialisation cost and regression models

� Robust to noisy objectives using multiple restarts

=⇒ effective alternative to sample averaging, regression models

� Reduced initialisation cost for expensive objectives

=⇒ progress from 2 evaluations, if desired
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Flexible Model Construction

min
x∈Rn

f (x) =
1

2
‖r(x)‖22, r(x) ∈ Rm

� Have p + 1 interpolation points {y0 = xk , y1, . . . , yp}
� Find model mk(s) = rk + Jks by solving

min
rk ,Jk

p∑

t=0

‖mk(y t − xk)− r(y t)‖22

⇒ one (p + 1)× (n + 1) system, different RHS for each residual ri , i = 1, . . . ,m
� Works for any p ≥ 1

– Unique interpolant if p = n (usual case)

– Regression model if p > n (e.g. noisy objective)

– Select minimal-norm solution if p < n (used for reduced initialisation cost)
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Noisy Problems — Example of Stagnation

� TR radius ∆k → 0, so interpolation points eventually get close together

� Objective values all within noise level =⇒ interpolated model only captures noise

� This is one of the main use cases for DFO!
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Robustness to Noise

Common approaches:

� Sample averaging [Deng & Ferris (2006), Chen, Menickelly & Scheinberg (2016)]

� Regression models [Conn, Scheinberg & Vicente (2009), Billups, Larson & Graf (2013)]

� Both available in DFO-LS if desired (c.f. flexible model construction)

Alternative strategy: multiple restarts

� When ∆k ≤ ∆min, reset ∆k+1 = ∆0 initial TR radius
� Update interpolation set for new trust region:

– Move xk plus N ≈ 2 points closest to xk to geometry-improving points in

B(xk ,∆k+1)

� Auto-detection: call restart if ∆k consistently decreasing and ‖Jk − Jk−1‖F
consistently increasing for several iterations
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Multiple Restarts Strategy — Example
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DFO-LS — Comparison of Noise Robustness Strategies

Data profiles (using 53 test problems from [Moré & Wild, 2009], τ = max(10−5, τ̂))
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Reduced Initialisation Cost for Expensive Objectives

� Start by evaluating objective at x0 and p random orthogonal directions

y t = x0 + ∆0qt (t = 1, . . . , p) — usually p = n

� Expensive objective? Want to see progress with very few evaluations

� For p < n directions, use interpolating model with minimal norm

� Problem: Jk not full rank, so sk ∈ span{y1 − xk , . . . , yp − xk}
=⇒ can never search outside the initial subspace of directions

� Solution: Artificially perturb Jk to make it full rank

– Floor singular values at σp > 0

� Sometimes this will give descent, but always expands the search space
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Reduced Initialisation Cost — Example

Can make reasonable progress with < n + 1 evaluations, but usually better to wait (if

possible)
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Reduced Initialisation Cost — Performance

Data profiles (60 test problems with n ≈ 100)
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Climate Parameter Tuning

� Aim: tuning models of global atmospheric physics

� Fit to observations (e.g. average temperature, humidity, radiation)

� Difficulty: simulations are expensive (multi-year global climate simulation) and

noisy (underlying physics is chaotic)

� Standard approach for tuning climate models is manual:

– Generate different sets of parameters

– Evaluate fit to observations

– Select parameters with best fit (and possibly perturb these to generate new sets)

� Alternative: apply DFO-LS with multiple restarts
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Climate Parameter Tuning — Results

Example Results (HadAM3, 14 parameters, budget 90 evaluations)
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Cost vs. # objective evaluations (cost ≤ 5 considered broadly in line with observations)
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Climate Parameter Tuning — Results

� Start DFO-LS from 5 different starting locations

� Find 5 different parameter combinations, all in line with observations (and

genuinely different local minima)

� Outperforms other solvers: approximate finite differencing, surrogate modelling

Climate research question

Q: How are these local minima different from a climatology perspective?

A: Not very! Uncertainty in climate predictions largely driven by modelling choices

(processes included & parametrisations) not parameter tuning.
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Outline

1. Introduction to derivative-free optimisation (DFO)

2. DFO for nonlinear least-squares

3. Software implementation

4. Application: parameter tuning of climate models

5. Application: learning image denoising parameters
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Bilevel Learning

Many image processing problems can be posed in the form

min
x
D(Ax , y) +R(x),

where D measures data fidelity (Ax ≈ y) and R is regulariser; e.g. denoising

min
x

1

2
‖x − y‖22

︸ ︷︷ ︸
D(x ,y)

+ α
∑

j

√
‖∇xj‖22 + ε2

︸ ︷︷ ︸
≈TV(x)

+
η

2
‖x‖22

This problem is smooth and strongly convex, can be solved effectively with iterative

methods (gradient descent, NAG, FISTA, etc.).
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Bilevel Learning

� Unclear how to choose parameters θ := [α, ε, η]>

� One option: learn parameters from example problems {(x i , y i )}:

min
θ

∑

i

‖x̂ i (θ)− x i‖22

s.t. x̂ i solves denoising problem with θ

� Bilevel optimisation problem, requires computing ∂θx̂ i (θ)

– Requires very high accuracy solves of denoising problem

– Don’t know in advance what accuracy is required (educated guess)

� Alternative: modify DFO-LS to allow dynamic accuracy on objective evaluations

(i.e. ask for x̂ i (θ) correct to within some error δx)
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Bilevel Learning

Example results (gradient descent & FISTA as lower-level solvers):

More efficient learning, without requiring heuristics for lower-level accuracy

DFO for least-squares — Lindon Roberts (lindon.roberts@anu.edu.au) 32



Conclusion & Future Work

Conclusions

� DFO methods suitable when objective is expensive and/or noisy

� DFO equivalent of Gauss-Newton gives an effective algorithm for least-squares

� Reduced initialisation cost if desired — can start progressing after 2 evaluations

� Effective for tuning global climate models and bilevel learning

Future work:

� Scalability: dimensionality reduction, sparsity, inexact interpolation solves, etc.

� Local convergence rates

� General objective and constrained problems
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