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Nonlinear Optimisation

Interested in nonlinear, nonconvex optimisation
min f(x
xeR" ( )’

where objective function f : R” — R.

e Ubiquitous in quantitative disciplines, but very difficult to solve in general
e No information about structure of f, except assumed smoothness
— Problem constants (e.g. bounds on derivatives) unknown
— Allow inaccurate evaluation of f, e.g. stochastic noise, iterative process
e Unconstrained, but software allows bounds a; < x; < b;
e Seek local minimiser: f(x*) < f(x) for all x close to x* (not all x € R")
— Actually, seek (approximate) stationary point |[VF(x*)||2 < e

e Gap between ‘textbook’ algorithms and state-of-the-art performance is large
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Nonlinear Optimisation

Basic trust-region method:
e Approximate f near xj, with quadratic model
f(xi+ )~ m(s) = f(x) + VF(xe) s + %sTvzf(xk)s
e Minimise model (set Vmy = 0) gives Newton's method
Xki1 = Xk + Sk where [V2F(xi)]sk = —VF(xy)

but may not converge!

e One way to guarantee convergence: restrict the step size

Sk = arg min my(s) subject to ||s|]2 < Ak
seR”

= ‘trust region’ subproblem — specialised algorithms exist
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Nonlinear Optimisation

Basic iterative method:

1. Given x4 and Ay > 0, evaluate f(xx), Vf(xx), V2f(xx) and construct model my
2. Solve trust region subproblem to get step sy
3. Evaluate f(xx + sx) and determine quality of step

__actual decrease  f(xy) — f(xx + Sk)
Ple= predicted decrease  my(0) — my(sk)
4. Accept/reject step and update Ay:
o If pp > 0.7, set xp41 = xi + S, and A = 20 [very successful]
o If pp €]0.1,0.7), set x11 = xx + Sk and Ayyq = Ay [successful]
o If pr < 0.1, set xp11 = xx and Apg = Ag/2 [unsuccessful]

Standard algorithm with theoretical guarantees (e.g. limy_, ||V (xk)|l2 = 0)
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Derivative-Free Optimisation

1
f(xk+ )~ mi(s) = F(x) + VF(xe) s+ 5sTv2f(xk)s

e How to calculate derivatives of f in practice?
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Derivative-Free Optimisation

1
f(xk+ )~ mi(s) = F(x) + VF(xe) s+ 5sTv2f(xk)s

How to calculate derivatives of f in practice?
— Write code by hand
— Finite differences
— Algorithmic differentiation
Difficulties when function evaluation is
— ‘Black-box’
— Noisy

— Computationally expensive

Alternative — derivative-free optimisation (DFO)

Many applications: finance, climate, engineering design, experimental design, . ..
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Model-Based DFO — Basic ldeas

Many different approaches: model-based, Nelder-Mead, pattern/direct search, genetic
algorithms, ...

e Previously,
-~ _ T 1 10
f(xx+8)~ m(s)=rf(xx)+ Vi(xy) s+ 58 Verf(xk)s
e Instead, approximate
1
f(xk+s)~ mg(s) = f(xk) + ngs + ESTHks

e Find g, and H) without using derivatives
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Model-Based DFO — Basic ldeas

Many different approaches: model-based, Nelder-Mead, pattern/direct search, genetic
algorithms, ...

e Previously,

1
f(xk+8)~ mi(s) = f(x) + VF(xe) s+ 5sTv2f(xk)s

Instead, approximate

1
f(Xk +s) ~ mk(s) = f(xk) —l—ngS+ ESTH;(S

Find g, and Hj without using derivatives
e How? Interpolate f over a set of points
e Same trust region approach as before

[Conn, Powell, Scheinberg, Toint, Vicente, ...]

DFO for least-squares — Lindon Roberts (1indon.roberts@anu.edu.au) 7



Example: Model-Based DFO

1. Choose interpolation set
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Example: Model-Based DFO

2. Interpolate & minimise...
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Example: Model-Based DFO

3. Add new point to interpolation set (replace a bad point)
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Example: Model-Based DFO

4. Repeat with new interpolation set & model
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Model-Based DFO — Theory

What about theory?

e If geometry of interpolation points is good (in a specific sense), then model has
same accuracy order as first-order Taylor series

’f(Xk + S) — mk(s)] < /ifAz,
IVF(x +5) = Vmi(s)]l2 < kg,

for all HSH2 < Ak.

e Need to modify algorithm to fix geometry, when needed
e Get similar convergence results as derivative-based methods

— Global convergence to stationary points: limg_o [[VF(xk)|2 =0
— Worst-case complexity: need at most O(e2) iterations to get || V£ (xy)|2 < €
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Model-Based DFO — Theory

Geometry Requirement

e Interpolation set is {yg,...,¥,}, usually with yq := x
e Build model by imposing f(y,;) = mk(y, — xx) for all t
e Lagrange polynomials: l¢(y,) = ds+ for all s, t

e '‘Good’ geometry if all £; small < interpolation problem well-conditioned

Theorem (Conn, Scheinberg & Vicente, 2008)

If [6e(xk + 8)| < G for all ||s]|2 < Ak and all ||y, — xk|l2 < G Ay, then the
interpolation model is “fully linear” (Taylor-accurate) inside the trust region.

Simple algorithms can check/ensure these conditions (maybe moving some points).
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Model-Based DFO — Algorithm

Basic model-based DFO method:

1. Given x, and Ak > 0, construct interpolation model my
2. Solve trust region subproblem to get step s

3. Evaluate f(xx + sk) and determine quality of step

_actual decrease  f(xy) — f(x) + sk)
Pk bredicted decrease my(0) — mi(sk)

4. Accept/reject step and update Ag:
o If pp > 0.7, set xx11 = X+ Sk and Ay = 24, add x; 1 to model [very successful]
o If pp €1]0.1,0.7), set xx11 = xx + Sk and Ag1 = Ak, add x,41 to model [successful]
e If px < 0.1 and model not fully linear, set xx11 = Xk, Akr1 = Ag and make model
fully linear [model-improving]
e If pr < 0.1 and model fully linear, set xx41 = xx and Ax11 = Ayx/2  [unsuccesstul]
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DFO for Least-Squares — Basic Framework

. 1 ”
min f(x) = S[F(x)3,  r(x)eR
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DFO for Least-Squares — Basic Framework

. 1 ”
min f(x) = S[F(x)3,  r(x)eR

Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearise r at x, using Jacobian
r(xx+s) =~ my(s) = r(xg)+J(xx)s

e Approximation: V2f(x,) =

J(xi) "I (x1) + EETER) VAt
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DFO for Least-Squares — Basic Framework

min f(x) = %Hr(x)“%, r(x) e R"

X€ER™
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearise r at x, using Jacobian e Jacobian not available, use
r(xc+s) ~ m(s) = r(xx)+J(xk)s my(s) = r(xy) + Jis
e Approximation: V2f(x) = e Find J, by interpolation

J(xi) "I (x1) + EETER) VAt
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DFO for Least-Squares — Basic Framework

min f(x) = %Hr(x)“%, r(x) e R"

X€ER™
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearise r at x, using Jacobian e Jacobian not available, use
r(xc+s) ~ m(s) = r(xx)+J(xk)s my(s) = r(xy) + Jis
e Approximation: V2f(x) = e Find J, by interpolation

J(xi) "I (x1) + EETER) VAt

In both cases, solve trust region subproblem with simplified quadratic model

e+ ) ~ mi(s) = 5 lme(s)]3
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DFO Gauss-Newton

Previous works use quadratic models for r(x) [Zhang, Conn & Scheinberg (2010), Wild (2017)]

Advantages of linear models

e Match global convergence guarantees
e Fewer evaluations of r(x) to build first model

e Lower linear algebra cost (=~ 7x speedup) and improved scalability
e Explicit connection between geometry and linear algebra

— When adding interpolation point x41, delete point y, with large |[¢;(xk41)]
— Gives rank-1 update of interpolation matrix A, hence

1
1 T
AIIGW - Aold + — utvt Where Oy = ét(Xk+1)
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DFO-LS (Derivative-Free Optimisation for Least-Squares)

Open-source Python package (NLLS with bounds)

— Github: numerical algorithms group/dfols

Key Features:

e Flexible model construction

—> enables both reduced initialisation cost and regression models
e Robust to noisy objectives using multiple restarts

— effective alternative to sample averaging, regression models

e Reduced initialisation cost for expensive objectives

= progress from 2 evaluations, if desired
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Flexible Model Construction

. 1 ”
min f(x) = S[F(x)3,  r(x)eR

e Have p + 1 interpolation points {yq = Xk, ¥1,---,¥p}
e Find model my(s) = ry + Jxs by solving
p
min " ey, — x¢) — r(y,)|
t=0
= one (p+ 1) x (n+ 1) system, different RHS for each residual r;, i =1,..., m
o Works for any p > 1
— Unique interpolant if p = n (usual case)
— Regression model if p > n (e.g. noisy objective)
— Select minimal-norm solution if p < n (used for reduced initialisation cost)
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Noisy Problems — Example of Stagnation

e TR radius A, — 0, so interpolation points eventually get close together
e Objective values all within noise level = interpolated model only captures noise
e This is one of the main use cases for DFQO!

10° = 10 — k= Teallr
—— Best (noisy) [ so far . _— A
10714 —=—- Best (true) f so far 10
10°4
10° 4
10!
10
1073
10°°
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1077 T T T T T T T T
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Budget in evals (gradients) Budget in evals (gradients)
Normalised Objective Decrease Convergence Details

DFO for least-squares — Lindon Roberts (1indon.roberts@anu.edu.au) 18



Robustness to Noise

Common approaches:

e Sample averaging [Deng & Ferris (2006), Chen, Menickelly & Scheinberg (2016)]
e Regression models [Conn, Scheinberg & Vicente (2009), Billups, Larson & Graf (2013)]
e Both available in DFO-LS if desired (c.f. flexible model construction)
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Robustness to Noise

Common approaches:

e Sample averaging [Deng & Ferris (2006), Chen, Menickelly & Scheinberg (2016)]
e Regression models [Conn, Scheinberg & Vicente (2009), Billups, Larson & Graf (2013)]
e Both available in DFO-LS if desired (c.f. flexible model construction)

Alternative strategy: multiple restarts

e When Ay < Apin, reset Agy1 = Ap initial TR radius
e Update interpolation set for new trust region:
— Move xj plus N = 2 points closest to x, to geometry-improving points in
B(xk, Ags1)
e Auto-detection: call restart if Ay consistently decreasing and ||Jx — Jk—1||F
consistently increasing for several iterations
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Multiple Restarts Strategy — Example
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DFO-LS — Comparison of Noise Robustness Strategies

Data profiles (using 53 test problems from [Moré & Wild, 2009], 7 = max(10~>, 7))
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Reduced Initialisation Cost for Expensive Objectives

e Start by evaluating objective at xg and p random orthogonal directions
Y =x0+2o0q, (t=1,...,p) —usually p=n

e Expensive objective? Want to see progress with very few evaluations
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Reduced Initialisation Cost for Expensive Objectives

Start by evaluating objective at x¢ and p random orthogonal directions
Y =x0+2o0q, (t=1,...,p) —usually p=n

Expensive objective? Want to see progress with very few evaluations

For p < n directions, use interpolating model with minimal norm

Problem: Jy not full rank, so s € span{y; — Xk, ..., ¥, — Xk}
= can never search outside the initial subspace of directions
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Reduced Initialisation Cost for Expensive Objectives

Start by evaluating objective at x¢ and p random orthogonal directions
Y =x0+2o0q, (t=1,...,p) —usually p=n

Expensive objective? Want to see progress with very few evaluations

For p < n directions, use interpolating model with minimal norm

Problem: Jy not full rank, so s € span{y; — Xk, ..., ¥, — Xk}
= can never search outside the initial subspace of directions

Solution: Artificially perturb Ji to make it full rank

— Floor singular values at o, > 0

Sometimes this will give descent, but always expands the search space
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Reduced Initialisation Cost — Example

Can make reasonable progress with < n+ 1 evaluations, but usually better to wait (if

possible)
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Reduced Initialisation Cost — Performance

Data profiles (60 test problems with n = 100)
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Climate Parameter Tuning

e Aim: tuning models of global atmospheric physics

Fit to observations (e.g. average temperature, humidity, radiation)

Difficulty: simulations are expensive (multi-year global climate simulation) and
noisy (underlying physics is chaotic)

Standard approach for tuning climate models is manual:
— Generate different sets of parameters
— Evaluate fit to observations
— Select parameters with best fit (and possibly perturb these to generate new sets)

Alternative: apply DFO-LS with multiple restarts
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Climate Parameter Tuning — Results

Example Results (HadAM3, 14 parameters, budget 90 evaluations)

Al

Cost

1 U

T
20

T
40

: :
60 80
Budget (evals)

Cost vs. # objective evaluations (cost < 5 considered broadly in line with observations)
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Climate Parameter Tuning — Results

e Start DFO-LS from 5 different starting locations

e Find 5 different parameter combinations, all in line with observations (and
genuinely different local minima)

e Qutperforms other solvers: approximate finite differencing, surrogate modelling

Climate research question

Q: How are these local minima different from a climatology perspective?
A: Not very! Uncertainty in climate predictions largely driven by modelling choices
(processes included & parametrisations) not parameter tuning.

DFO for least-squares — Lindon Roberts (1indon.roberts@anu.edu.au) 28



1. Introduction to derivative-free optimisation (DFO)
2. DFO for nonlinear least-squares

3. Software implementation

4. Application: parameter tuning of climate models

5. Application: learning image denoising parameters

DFO for least-squares — Lindon Roberts (1indon.roberts@anu.edu.au) 29



Bilevel Learning

Many image processing problems can be posed in the form
min D(Ax,y) + R(x),
X

where D measures data fidelity (Ax ~ y) and R is regulariser; e.g. denoising

min *HX —yl3 + az VIVXlE+e + *Htz

73()(4')

zTV(x)

This problem is smooth and strongly convex, can be solved effectively with iterative
methods (gradient descent, NAG, FISTA, etc.).
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Bilevel Learning

e Unclear how to choose parameters 6 := [, ¢,7] "
e One option: learn parameters from example problems {(x;,y;)}:
min > [:(0) = i3
1
s.t. X; solves denoising problem with 6
e Bilevel optimisation problem, requires computing JyX;(6)

— Requires very high accuracy solves of denoising problem
— Don't know in advance what accuracy is required (educated guess)

o Alternative: modify DFO-LS to allow dynamic accuracy on objective evaluations
(i.e. ask for x;(6) correct to within some error dy)
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Bilevel Learning

Example results (gradient descent & FISTA as lower-level solvers):

GD (K = 1000)
GD (K = 10000)
= Dynamic GD
FISTA (K = 200)
FISTA (K = 2000)
=== Dynamic FISTA

¥..-=\

—— L.
10¢ 10° 106 107

Lower problem iterations

More efficient learning, without requiring heuristics for lower-level accuracy
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Conclusion & Future Work

Conclusions

e DFO methods suitable when objective is expensive and/or noisy
e DFO equivalent of Gauss-Newton gives an effective algorithm for least-squares
e Reduced initialisation cost if desired — can start progressing after 2 evaluations

o Effective for tuning global climate models and bilevel learning

Future work:

e Scalability: dimensionality reduction, sparsity, inexact interpolation solves, etc.
e Local convergence rates

e General objective and constrained problems
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