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Further Reading

This talk is based on:

� C. Cartis & LR, Scalable subspace methods for derivative-free nonlinear

least-squares optimization, Mathematical Programming 199:1–2 (2023),

pp. 461–524.

� LR & C. W. Royer, Direct search based on probabilistic descent in reduced spaces,

SIAM Journal on Optimimization 33:4 (2023), pp. 3057–3082.

� W. Hare, LR & C. W. Royer, Expected decrease for derivative-free algorithms using

random subspaces, Mathematics of Computation, accepted, 2024.

Software packages are available on Github.
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Outline

1. Introduction to derivative-free optimisation (DFO)

2. Subspace DFO methods

3. Average-case analysis
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Optimisation in Data Science

Optimisation is fundamental to data science. For example, to fit a predictive model

v ≈ m(u, x)

(e.g. linear/nonlinear regression, neural networks) we usually have training data (u i , v i )

and solve the empirical risk minimisation problem

min
x

f (x) =
1

N

N∑
i=1

ℓ(v i ,m(u i , x)),

for some loss function ℓ, for example ℓ(v1, v2) = ∥v1 − v2∥2.

This is a well-studied mathematical problem (and relevant to many other disciplines too).
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Gradient Descent

min
x∈Rn

f (x)

For any x , the vector ∇f (x) points in the direction of fastest ascent (locally).

Gradient descent iterates to a solution by stepping in the −∇f direction

xk+1 = xk − αk∇f (xk)

Theorem

Suppose f ∈ C 2(Rn) bounded below, with ∥∇2f (x)∥2 ≤ Hmax everywhere.

If αk = 1/Hmax for all k , then limk→∞∇f (xk) = 0.

If N large, often average over random subsets to get random approximations

gk ≈ ∇f (xk) → stochastic gradient descent.
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Gradient Descent: Practicalities

xk+1 = xk − αk∇f (xk)

� How to calculate derivatives of f ?

– Write code by hand

– Finite differences, f ′(x) ≈ f (x+h)−f (x)
h

– Algorithmic differentiation/backpropagation

� Impractical if function evaluation is black-box, computationally expensive or noisy

� How to pick stepsize/learning rate?

– Calculate Hmax

– Hyperparameter tuning

– Adaptive procedures (e.g. linesearch)

� Prefer adaptive procedures (no tuning, fits to local curvature)
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Derivative-Free Optimisation

For black-box, computationally expensive and/or noisy functions, we cannot assume

access to gradient information.

Alternative: derivative-free optimisation (DFO)

� Assume can evaluate f (x) but not ∇f (x) (but still assume f is differentiable)

� Several approaches: Nelder-Mead, genetic algorithms, Bayesian optimisation, ...

� Seek local minimiser (actually, approximate stationary point: ∥∇f (x)∥2 ≤ ϵ)

� Focus on efficient & adaptive methods
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Applications

Application 1: Climate Modelling [Tett et al., 2022]

� Parameter calibration for global climate models (least squares minimisation)

� One model run = simulate global climate for 5 years = expensive

� Very complicated, chaotic physics = black-box & noisy
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Applications

Application 2: Adversarial Example Generation [Alzantot et al., 2019]

� Find perturbations of neural network inputs which are misclassified (min. probability

of correct label/max. probability of desired incorrect label)

� Neural network structure assumed to be unknown = black-box

� Want to test very few examples ≈ expensive

� Useful for copyright protection of artists’ work against generative AI [Shan et al., 2023]

Image from [Goodfellow et al., 2015]
Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 8



Applications

Application 3: Fine-Tuning Large Language Models [Malladi et al., 2023]

� Take pre-trained LLM, tweak parameters to be better at a specific task
– e.g. Sentiment analysis: “[input text]. It was...” (good or bad?)

� Very large models = backpropagation expensive & distributed

� DFO method (MeZO) uses 12x less memory than gradient-based methods (FT) but

with comparable performance

Image from [Malladi et al., 2023]
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Direct Search

Method 1: Direct Search (simple & easily generalised)

� Given xk ∈ Rn and ∆k > 0, choose a set Dk ⊂ Rn of m vectors
� If there exists d k ∈ Dk with f (xk +∆kd k) < f (xk)− 1

2∆
2
k∥d k∥22

– Set xk+1 = xk +∆kd k and increase ∆k

– Otherwise, set xk+1 = xk and decrease ∆k

For convergence, need Dk to be κ-descent:

max
d∈Dk

−dT∇f (xk)

∥d∥2 · ∥∇f (xk)∥2
≥ κ ∈ (0, 1]

i.e. there is a vector d making an acute angle with −∇f (xk).

Examples: {±e1, . . . ,±en} with κ = 1/
√
n or {e1, . . . , en,−e} with κ ∼ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]
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Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]
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Model-Based Optimisation

Method 2: Model-Based Optimisation (c.f. Bayesian optimisation)

� Build a Taylor series-like model

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

� Get step by minimising model in a neighbourhood

sk = argmin
s∈Rn

mk(s) subject to ∥s∥2 ≤ ∆k

=⇒ ‘trust region’ subproblem – specialised algorithms exist

� Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)
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Model-Based Optimisation

� Build a Taylor series-like model

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How?

Interpolate f over a set of points — find gk , Hk such that

mk(y − xk) = f (y), ∀y ∈ Y

For convergence, need mk to be fully linear:

|f (xk + s)−mk(s)| ≤ O(∆2
k) and ∥∇f (xk + s)−∇mk(s)∥2 ≤ O(∆k)

Achievable if points in Y are well-spaced (in a specific sense).

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Example: Model-Based DFO

1. Choose interpolation set
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Example: Model-Based DFO

2. Interpolate & minimise...
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Example: Model-Based DFO

3. Add new point to interpolation set (replace a bad point)
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Example: Model-Based DFO

4. Repeat with new interpolation set & model
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Complexity Theory

Analyse methods using worst-case complexity: how long before ∥∇f (xk)∥2 ≤ ϵ?

Metric Deriv-based Model-based Direct search

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n3ϵ−2) O(n2ϵ−2)

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016; Vicente, 2013]

� Same ϵ dependency as derivative-based, but scales badly with problem dimension n

� Model-based methods also have substantial linear algebra work for interpolation

and geometry management: at least O(n3) flops per iteration

Challenge

How can DFO methods be made scalable?
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Randomised methods

Challenge

How can DFO methods be made scalable?

The machine learning community often uses randomised finite differencing (‘gradient

sampling’)

∇f (x) ≈
[
f (x + hv)− f (x)

h

]
v ,

for random v (e.g. standard Gaussian). [Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017]

� Better complexity, but still need expensive hyperparameter tuning

� More structure in sampling (e.g. fully linear requirements) gives better gradient

estimates [Berahas et al., 2022]
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Randomised methods

Challenge

How can DFO methods be made scalable?

Randomisation is still a promising approach:

� Make search directions κ-descent with probability < 1 [Gratton et al., 2015]

� Make model fully linear with probability < 1 [Gratton et al., 2017]

Problem: Improves complexity for direct search, but not for model-based!

Why? Direct search formulation effectively allows dimensionality reduction (sample ≪ n

directions).

Goal

Use dimensionality reduction techniques suitable for both classes.
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Randomisation for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose x1, . . . , xN ∈ Rd and ϵ ∈ (0, 1). Let A ∈ Rp×d be a matrix with

i.i.d. N (0, p−2) entries and p ∼ log(N)/ϵ. Then with high probability,

(1− ϵ)∥x i − x j∥2 ≤ ∥Ax i − Ax j∥2 ≤ (1 + ϵ)∥x i − x j∥2, ∀i , j = 1, . . . ,N.

� Random projections approximately preserve distances (& inner products, norms, ...)

� Reduced dimension p depends only on # of points N, not the ambient dimension d !

� Other random constructions satisfy J-L Lemma (Haar subsampling, hashing, ...)
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Subspace methods

We use a subspace method: only search in low-dimensional subspaces of Rn

Subspace framework:

� Generate subspace of dimension p ≪ n given by col(Pk) for random Pk ∈ Rn×p

� Direct search: choose Dk ⊂ Rp which is κ-descent for PT
k ∇f (xk) ∈ Rp

� Model-based: build a low-dimensional model m̂k(ŝ) which is fully linear for

f̂ (ŝ) := f (xk + Pk ŝ) : Rp → R

Fewer interpolation/sample points needed, cheap linear algebra (everything in Rp)
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Subspace methods — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

∥PT
k ∇f (xk)∥2 ≥ α∥∇f (xk)∥2, for some α > 0.

i.e. if there is still work to do, then we know this by only inspecting f in the subspace.

Key Assumption

The subspace Pk is well-aligned with probability 1− δ.

Using J-L lemma, choose p ∼ (1− α)−2| log δ| = O(1) independent of n.

Data oblivious: don’t need to know ∇f (xk) when generating Pk .
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Subspace DFO — Complexity

Theorem (Cartis & LR, 2023; LR & Royer, 2023)

If f is sufficiently smooth and bounded below and ϵ sufficiently small, then

P
[
Kϵ ≤ C (p, α, δ)ϵ−2

]
≥ 1− e−c(p,α,δ)ϵ−2

,

where Kϵ is the first iteration with ∥∇f (xk)∥2 ≤ ϵ.

� Implies E [Kϵ] = O(ϵ−2) and infk ∥∇f (xk)∥2 = 0 almost surely

� O(p) evaluations per iteration, so same bounds for evaluation complexity
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Subspace methods — Complexity

Standard methods:

Metric Deriv-based Model-based Direct search Rand. FD

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n3ϵ−2) O(n2ϵ−2) O(nϵ−2)

Model-based methods have O(n3) linear algebra work per iteration.

Using random subspaces:

Metric Deriv-based Model-based Direct search Rand. FD

Iterations O(ϵ−2) O(n2ϵ−2) O(nϵ−2) O(nϵ−2)

Evaluations ≈ O(nϵ−2) O(n2ϵ−2) O(nϵ−2) O(nϵ−2)

Model-based methods have O(n) linear algebra work per iteration.
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Example Results

Example results for different subspace dimensions p:
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Fraction of test problems solved vs. # evaluations of f — higher is better.
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Theory says p = O(1) works, numerics say take p →∼ 1. Why might this be true?
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Outline

1. Introduction to derivative-free optimisation (DFO)

2. Subspace DFO methods

3. Average-case analysis
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Average-Case Analysis

Almost all analysis of optimisation algorithms is worst-case: e.g. “for all objectives f in a

given class, get ∥∇f (xk)∥2 ≤ ϵ after at most k = O(ϵ−2) iterations”.

Does this capture realistic behaviour?

� Not for linear programming! Simplex method takes exponentially many iterations

(worst-case) but on average is polynomial time [Spielman & Teng, 2004]

� Gradient descent-type methods designed for (convex) average-case Hessian spectra

can outperform “worst-case optimal” methods [Pedregosa & Scieur, 2020]

� For nonconvex optimisation, can do worst-case analysis in different regions of the

domain separately [Curtis & Robinson, 2021]

New here: average-case analysis for nonconvex optimisation algorithms.
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Average-Case Analysis

What is a tractable model to analyse these algorithms?

� Pick random linear function f (x) = vTx

� At xk , pick a random p-dimensional subspace

� Do 1 iteration of subspace method in dimension p

– Direct search with Dk = {±e1, . . . ,±ep} or model-based with linear interpolation

� Look at expected decrease as function of relevant dimensions

E(p, n) := E[f (xk)− f (xk+1)]

with expectation over uniformly distributed objective functions (unit vectors v) and

subspaces (Stiefel manifold).

Assumes f is linear, or ∆k ≪ 1, i.e. close to a solution.
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Average-Case Analysis: Direct Search

Calculating expected decrease leads to an interesting problem:

Lemma

For direct search, E(p, n) = Eg∼Sn−1 [max(|g1|, . . . , |gp|)]

i.e. for a randomly distributed unit vector g ∈ Rn, ∥g∥2 = 1, what is the expected

∞-norm of its first p coordinates?

Theorem (Hare, LR & Royer, 2023)

For direct search,

E(p, n) =
p2p−1

πp/2
·
Γ
(
n
2

)
Γ
(
p+1
2

)
Γ
(
n+1
2

) · I(p)

where I(p) is a (nasty) (p − 1)-dimensional integral.
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Nasty Integral

I(p) =
∫
R

p−1∏
j=1

sinj(φj)

 dφp−1 · · · dφ1

where

R =

(φ1, . . . , φp−1) ∈
[π
4
,
π

2

]
×

p−1∏
j=2

[
arctan

(
j−1∏
k=1

1

sin(φk)

)
,
π

2

]

p I(p) Approx.

1 1 1.0000

2 1/
√
2 0.7071

3
(
4 arctan(

√
2) + arctan(460

√
2/329)

)
/(8
√
2) 0.4352

4 arctan(1/(2
√
2))/
√
2 0.2403

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 29



Nasty Integral

I(p) =
∫
R

p−1∏
j=1

sinj(φj)

 dφp−1 · · · dφ1

where

R =

(φ1, . . . , φp−1) ∈
[π
4
,
π

2

]
×

p−1∏
j=2

[
arctan

(
j−1∏
k=1

1

sin(φk)

)
,
π

2

]
p I(p) Approx.

1 1 1.0000

2 1/
√
2 0.7071

3
(
4 arctan(

√
2) + arctan(460

√
2/329)

)
/(8
√
2) 0.4352

4 arctan(1/(2
√
2))/
√
2 0.2403

Randomised Subspace Methods — Lindon Roberts (lindon.roberts@sydney.edu.au) 29



Average-Case Analysis: Direct Search

Although I(p) is nasty, we can still get bounds on it and then look at “expected

decrease per objective evaluation”.

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation for direct search,

E(p, n)/(2p), is strictly decreasing in p for p = 1, . . . , n.

So, the smallest subspace dimension p = 1 gives the best ‘bang for your buck’.
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Average-Case Analysis: Model-Based

For model-based methods, look at expected 2-norm of first p components of random

unit vector (much nicer than ∞-norm) to get a similar result:

E(p, n) = Eg∼Sn−1

[√
g2
1 + · · ·+ g2

p

]
=

Γ
(
n
2

)
· Γ
(
p+1
2

)
Γ
(
n+1
2

)
· Γ
(p
2

) ≈
√
p
√
n

for p, n large

Theorem (Hare, LR & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(p + 1), satisfies

E(2, n)
3

>

[
E(1, n)

2
=

E(3, n)
4

]
>

E(4, n)
5

> · · · > E(n, n)
n + 1

So E(p, n)/(p + 1) is strictly decreasing in p for p ≥ 2, not p ≥ 1.
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Conclusions & Future Work

Conclusions

� DFO useful for optimising complex/expensive functions

� Randomised projections can be effective for dimensionality reduction

� Large-scale DFO is possible using random subspaces

Future Work

� Second-order worst-case complexity analysis

� Efficient implementation of subspace quadratic models (model-based)

� Average-case analysis for quadratic objectives

� Impact of noisy objective evaluations

� Impact of low effective dimensionality

� Constrained problems?
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