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Variational Regularization

We wish to solve inverse problems (here, in imaging) of variational regularization type.

Variational regularization problem

Suppose we have an object of interest x∗ ∈ X , a measurement operator A and some

observed data y∗ ≈ Ax∗.

We wish to find x∗ given y∗ by solving

min
x∈X

D(Ax , y∗) +R(x),

where D(y1, y2) is a measure of distance and R(x) is a regularizer encouraging

solutions of a given type.

[Chambolle & Pock, 2016]
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Example: Image denoising

Example (image denoising): given a noisy image y , find a denoised image x by solving

min
x

1

2
∥x − y∥22︸ ︷︷ ︸
D(x ,y)

+ αTV(x)︸ ︷︷ ︸
R(x)

where α > 0 and TV(x) = ∥∇x∥1 is the total variation of an image (discretized into a

sum over pixels).

Goal: find x ≈ y with small total variation (approx. piecewise constant).

We will need to consider a smoothed version of TV to meet our assumptions,

min
x

1

2
∥x − y∥22︸ ︷︷ ︸
D(x ,y)

+ α
∑
j

√
∥∇xj∥22 + ν2

︸ ︷︷ ︸
≈TV(x)
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Issue: the solution depends on regularizer parameters α, ν > 0!

Original image Noisy image

Image source: University of Melbourne
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Example: Image denoising

min
x

1

2
∥x − y∥22︸ ︷︷ ︸
D(x ,y)

+ α
∑
j

√
∥∇xj∥22 + ν2

︸ ︷︷ ︸
≈TV(x)

Issue: the solution depends on regularizer parameters α, ν > 0!

logα = −4, log ν = −3

PSNR = 21.7 dB

logα = −2, log ν = −3

PSNR = 25.1 dB

logα = 0, log ν = −3

PSNR = 20.6 dB
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Example: Image denoising

min
x

1

2
∥x − y∥22︸ ︷︷ ︸
D(x ,y)

+ α
∑
j

√
∥∇xj∥22 + ν2

︸ ︷︷ ︸
≈TV(x)

Issue: the solution depends on regularizer parameters α, ν > 0!

logα = −2, log ν = −5

PSNR = 24.4 dB

logα = −2, log ν = −3

PSNR = 25.1 dB

logα = −2, log ν = −1

PSNR = 23.6 dB
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Choosing Parameters

Recovered solution depends strongly on problem parameters (e.g. α, ν)

Question

How to choose good problem parameters?

• Trial & error

• L-curve criterion

• Bilevel learning — data-driven approach
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Bilevel Learning

Suppose we have training data (x1, y1), . . . , (xn, yn) — ground truth and noisy

observations.

Attempt to recover xi from yi by solving inverse problem with parameters θ ∈ Rm:

x̂i (θ) := argmin
x

gi (x , θ), e.g. gi (x , θ) = D(Ax , yi ) +R(x , θ).

Try to find θ by making x̂i (θ) close to xi

min
θ

1

n

n∑
i=1

∥x̂i (θ)− xi∥2 + J (θ),

with optional (smooth) term J (θ) to encourage particular choices of θ.
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Bilevel Optimization

The bilevel learning problem is:

min
θ

F (θ) :=
1

n

n∑
i=1

∥x̂i (θ)− xi∥2 + J (θ),

s.t. x̂i (θ) := argmin
x

gi (x , θ), ∀i = 1, . . . , n.

• If gi are strongly convex in x and sufficiently smooth in x and θ, then x̂i (θ) is

well-defined and continuously differentiable.

• Upper-level problem (minθ F (θ)) is a smooth nonconvex optimization problem

Many use cases in data science: learning image regularizers, hyperparameter tuning,

data hypercleaning, ...
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Bilevel Learning

Difficulty?

Bilevel learning is just a smooth nonconvex problem — where is the challenge?

• Can’t evaluate lower-level minimizers x̂i (θ) exactly, so can never get exact F (θ) or

∇F (θ) [Kunisch & Pock, 2013; Sherry et al., 2020]

• And more to come...

Key question 1: how can we approximate ∇F (θ), and how accurate is this

approximation?

Note: error in F (θ) approximation is easy to bound from µ-strong convexity,

∥x − x̂i (θ)∥ ≤ 1
µ∥∇xgi (x , θ)∥
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Hypergradient

Consider the simple bilevel problem:

min
θ∈Rn

F (θ) := f (x∗(θ)), s.t. x∗(θ) := argmin
y∈Rd

g(y , θ).

Theorem (Implicit Function Theorem)

If g sufficiently smooth (in y and θ) and strongly convex in y, then θ 7→ x∗(θ) is

continuously differentiable with

∇x∗(θ) = −[∂yyg(x
∗(θ), θ)]−1∂y∂θg(x

∗(θ), θ) ∈ Rd×n

This gives us the exact hypergradient

∇F (θ) = −[∂y∂θg(x
∗(θ), θ)]T [∂yyg(x

∗(θ), θ)]−1∇f (x∗(θ))
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Hypergradient Computation

The exact hypergradient is

∇F (θ) = −[∂y∂θg(x
∗(θ), θ)]T [∂yyg(x

∗(θ), θ)]−1∇f (x∗(θ))

• We can never evaluate x∗(θ) exactly (minimizer of g).

• If dimension of y is large, solve linear system inexactly (∂yyg is SPD so use CG)

Implicit Function Theorem (+ CG) approach:

1. Solve lower-level problem to get x∗ε such that ∥x∗ε − x∗(θ)∥ ≤ ε

2. Using CG, find qε,δ such that ∥[∂yyg(x∗ε , θ)]qε,δ −∇f (x∗ε )∥ ≤ δ.

3. Return hypergradient estimate hε,δ := −[∂y∂θg(x
∗
ε , θ)]

Tqε,δ.

Theorem (Pedregosa (2016); Zucchet & Sacramento (2022))

If ε is sufficiently small, then ∥hε,δ −∇F (θ)∥ = O(ε+ δ).
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Iterative AD

An alternative approach for calculating ∇F (θ) is to use automatic differentiation (AD).

Given some algorithm for approximating x∗(θ) := argminy∈Rd g(y , θ), we can apply AD

to that algorithm to compute ∇F (θ) = ∇x∗(θ)T∇f (x∗(θ)). [Christianson (1994)]

For example, run K iterations of gradient descent with fixed stepsize starting from x (0):

x (k+1) = x (k) − α∂yg(x
(k), θ), k = 0, . . . ,K − 1

Reverse mode AD on this iteration uses the chain rule to compute ∂θx
(k) recursively:

∂θx
(k+1) = ∂θx

(k) − α[∂yyg(x
(k), θ)]∂θx

(k) − α∂θ∂yg(x
(k), θ)

with ∂θx
(0) = 0.

With care, computing [∂θx
(k)]T v for any vector v (e.g. ∇f (x (K)) ≈ ∇f (x∗(θ))) can be

done with one extra loop (in the reverse direction, k = K − 1, . . . , 0).
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Iterative AD

We are solving the lower-level problem with GD (x (K) ≈ x∗(θ)):

x (k+1) = x (k) − α∂yg(x
(k), θ), k = 0, . . . ,K − 1,

Since we are solving a smooth, strongly convex problem, if α is small enough then

∥x (K) − x∗(θ)∥ ≤ λK∥x (0) − x∗(θ)∥ for some λ < 1.

The corresponding AD iteration returns h(K) ≈ ∇F (θ) after iterating

h(k+1) = h(k) − α[∂y∂θg(x
(K−k−1), θ)]T x̃ (K−k),

x̃ (K−k−1) = x̃ (K−k) − α[∂yyg(x
(K−k−1), θ)]x̃ (K−k).

Theorem (Mehmood & Ochs (2020))

The reverse mode AD hypergradient h(K) satisfies ∥h(K) −∇FK∥ = O(KλK ), where

∇FK := −[∂y∂θg(x
(K), θ)]T [∂yyg(x

(K), θ)]−1∇f (x (K)).
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Iterative AD

We can get a better iteration using inexact AD: evaluate all second derivatives at the

best estimate x (K).

h(k+1) = h(k) − α[∂y∂θg(x
(K), θ)]T x̃ (K−k),

x̃ (K−k−1) = x̃ (K−k) − α[∂yyg(x
(K), θ)]x̃ (K−k).

Theorem (Mehmood & Ochs (2020))

The inexact AD hypergradient h(K) satisfies ∥h(K) −∇FK∥ = O(λK ).

Note: Similar results hold using heavy ball (Polyak) momentum instead of GD.
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IFT vs. inexact AD

It turns out that the two hypergradient estimation procedures (IFT and inexact AD) are

the same thing!

Theorem (Ehrhardt & LR (2024))

Inexact AD is exactly equivalent to using K iterations of GD with stepsize α to solve

the symmetric positive definite linear system

[∂yyg(x
(K), θ)]q = ∇f (x (K)) ⇐⇒ min

q

1

2
qT [∂yyg ]q −∇f (x (K))Tq,

starting from q(0) = 0, and returning −[∂y∂θg(x
(K), θ)]Tq(K).

So inexact AD is exactly an IFT method in disguise!

An equivalent result holds for inexact AD using heavy ball momentum instead of GD.
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Unified Framework

This motivates a general hypergradient approximation framework:

1. Solve the lower-level problem to get x∗ε such that ∥x∗ε − x∗∥ ≤ ε

2. Find qε,δ such that ∥[∂yyg(x∗ε , θ)]qε,δ −∇f (x∗ε )∥ ≤ δ.

3. Return hypergradient estimate hε,δ := −[∂y∂θg(x
∗
ε , θ)]

Tqε,δ.

This is IFT+CG, but any algorithm can be used in the first two steps, including inexact

AD (and they don’t have to be the same)

Theorem (Ehrhardt & LR (2024))

We have ∥hε,δ −∇F (θ)∥ = O(ε+ δ + ε2 + δε). Holds for any ε > 0 (new!).

Important improvement: the constants in the error bound are computable.
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Outline

1. Simple example: image denoising

2. Bilevel learning

3. Calculating hypergradients

4. Dynamic linesearch

5. Inexact SGD
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Bilevel Learning

Difficulty?

Bilevel learning is just a smooth nonconvex problem — where is the challenge?

• Can’t evaluate lower-level minimizers x̂i (θ) exactly, so can never get exact F (θ) or

∇F (θ) [Kunisch & Pock, 2013; Sherry et al., 2020]

• But can evaluate F and ∇F to arbitrary accuracy (with significant computational

cost) [Berahas et al., 2021; Cao et al., 2024]

• Potentially large scale in upper-level problem
– Many ML people looking at SGD-type methods at both levels simultaneously

e.g. [Grazzi et al., 2021; Ji et al., 2021; Kwon et al., 2023]

Key question 2: how to choose a good evaluation accuracy to get (i) guaranteed

convergence, (ii) without requiring hyperparameter tuning, (iii) at a reasonable

computational cost?
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Algorithm for Bilevel Learning

We aim to solve the bilevel learning problem

min
θ

F (θ) :=
1

n

n∑
i=1

∥x̂i (θ)− xi∥2 + J (θ),

s.t. x̂i (θ) := argmin
x

gi (x , θ), ∀i = 1, . . . , n.

With our inexact hypergradient computation and taking J = 0, this looks like a

single-level problem of the form

min
θ

F (θ) := f (x̂(θ))

where F (θ) and ∇F (θ) can never be computed exactly, but can be computed to

arbitrary accuracy (with higher computational costs for higher accuracy).
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Inexact Linesearch

A simple algorithm that requires no hyperparameter tuning is gradient descent with

linesearch:

θk+1 = θk − αk∇F (θk),

with αk > 0 chosen to be ensure that F (θk+1) ≤ F (θk)− αk∥∇F (θk)∥2 (and αk not

too small).

To handle inexactness, there are two key issues to resolve:

• Given zk ≈ ∇F (θk) can we ensure −zk is a descent direction (−zTk ∇F (θk) < 0)?

• If no sufficient decrease (with inexact F (θ) evaluations), should we shrink stepsize

or improve accuracy in F (or ∇F )?

To be practical, we don’t want to make accuracy in F or ∇F unnecessarily high (but

don’t want to lose convergence guarantees either).
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Inexact Gradient

Inexact Gradient Calculation

• Given ϵ and δ, calculate inexact lower-level minimiser xϵ ≈ x̂(θ) and inexact

gradient zk ≈ ∇F (θk) (using CG with residual tolerance δ)

• Calculate computable upper bound ω for ∥zk −∇F (θk)∥
• If ω ≤ (1− η)∥zk∥, then use −zk (guaranteed descent direction)

• Otherwise, decrease ϵ and δ by a constant factor and start again

Theorem (Salehi et al., 2025)

If ∥∇F (θk)∥ ≠ 0, then −zk is a descent direction for all sufficiently small ϵ and δ.

i.e. Gradient calculation terminates in finite time.
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Sufficient Decrease Condition

Inexact sufficient decrease condition

• Given θ̂ = θk − αkzk , compute xϵ(θk) ≈ x̂(θk) and xϵ(θ̂) ≈ x̂(θ̂) with accuracy ϵ

• Compute approximate objective values F̃ (θk) and F̃ (θ̂)

• Inexact sufficient decrease condition is (e.g. for L-smooth and convex f ):

F̃ (θ̂) ≤ F̃ (θk)− cαk∥zk∥2 − ∥∇f (xϵ(θ̂))∥ϵ− ∥∇f (xϵ(θk))∥ϵ−
1

2
Lϵ2

Theorem (Salehi et al., 2025)

• If inexact sufficient decrease condition holds, then F (θ̂) ≤ F (θk)− cαk∥zk∥2.
• For any ϵ, inexact sufficient decrease condition holds for all αk ∈ [αmin(ϵ), αmax(ϵ)]

• As ϵ → 0, we have [αmin(ϵ), αmax(ϵ)] → [0, αmax] for some αmax > 0
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Inexact Backtracking

Method of Adaptive Inexact Descent (MAID) (single iteration k)

1: for Jmax = J0, J0 + 1, J0 + 2, . . . do

2: Compute inexact gradient zk (possibly reducing ϵ and δ)

3: for j = 0, . . . , Jmax − 1 do

4: If sufficient decrease with stepsize αk = αρj , go to line 8

5: end for

6: Reduce ϵ and δ by constant factor (backtracking failed, need higher accuracy)

7: end for

8: Set θk+1 = θk − αkzk (successful linesearch)

9: Increase ϵ and δ by constant factor for next iteration

Theorem (Salehi et al., 2025)

At each iteration k, successful linesearch occurs in finite time. Hence ∥∇F (θk)∥ → 0.
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Quadratic Problem

Simple linear least-squares problem (closed form for true solution):

min
θ

f (θ) := ∥A1x̂(θ)− b1∥2 s.t. x̂(θ) = argmin
x

g(x , θ) := ∥A2x + A3θ − b2∥2

Do hyperparameters (initial accuracies ϵ and δ) matter?
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Quadratic Problem

Dynamic accuracy is better than fixed accuracy

100 101 102 103 104 105

Total Lower level + Linear solver iterations
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Optimality gap vs. computational work (lower-level + CG iterations)
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Field of Experts Denoising

Field of Experts Image Denoising

min
θ

f (θ) :=
1

N

N∑
i=1

∥x̂i (θ)− x∗i ∥2,

s.t. x̂i (θ) = argmin
x

gi (x , θ) :=
1

2
∥x − yi∥2 +

K∑
k=1

βk(θ)∥ck(θ) ∗ x∥k,θ +
µ

2
∥x∥2.

Learn K = 30 filters ck(θ), smoothed ℓ1-norms ∥ · ∥k,θ and weights βk(θ) to reconstruct

noisy 2D images (≈ 1500 hyperparameters θ).

Using N = 25 training images (x∗i , yi ) of size 96× 96 pixels.
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Field of Experts Denoising

Compare MAID against tuned HOAG (fixed accuracy schedule) [Pedregosa, 2016]
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Field of Experts Denoising

Apply learned filters on new test image

True image Noisy

(PSNR 20.3dB)

MAID

(PSNR 29.7dB)

HOAG best

(PSNR 28.8dB)

(Palladian Bridge, Bath, UK)
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Outline

1. Simple example: image denoising

2. Bilevel learning

3. Calculating hypergradients

4. Dynamic linesearch

5. Inexact SGD
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Inexact SGD

min
θ

F (θ) :=
1

n

n∑
i=1

∥x̂i (θ)− xi∥2,

s.t. x̂i (θ) := argmin
x

gi (x , θ), ∀i = 1, . . . , n.

So far, we have assumed that n (number of examples) is small enough that we can

compute the full (inexact) hypergradient at every iteration. But what if n is large?

This commonly arises in ML, and the solution is to randomly subsample the data at every

iteration (stochastic gradient descent). Defining random weights (w1, . . . ,wn), we get

min
θ

F (θ) := Ew [Fw (θ)], where Fw (θ) :=
n∑

i=1

wi∥x̂i (θ)− xi∥2

(e.g. wi = 1/nsample if example i is sampled, else wi = 0)
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Inexact SGD

Since we can only approximate ∇Fw (θ) to arbitrary accuracy, we get an inexact SGD

iteration:

θk+1 = θk − αzwk
(θk),

where zw (θ) ≈ ∇Fw (θ) to some desired accuracy, ∥zw (θ)−∇Fw (θ)∥ ≤ O(ϵ).

This is a form of SGD with biased stochastic gradients.

Existing convergence theory for biased SGD gives us convergence to a neighborhood of a

solution, provided the stepsize is small enough (requires tuning!). [Demidovich et al., 2023]

Theorem (Salehi et al., 2025)

If all Fw are smooth with Lipschitz continuous gradients and bounded below, and

α = O(ϵ2), then E[∥∇F (θk)∥2] ≤ O(ϵ2) after at most O(ϵ−4) iterations.
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Example Results

Applying MAID and ISGD to a field of experts denoising problem with n = 1024 training

images, we get:

Loss vs. computational effort

Beneficial to do subsampling in the large data regime, but requires hyperparameter

tuning.
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Conclusions & Future Work

Conclusions

• Bilevel learning provides a structured hyperparameter tuning method

• New link between AD and implicit function theorem hypergradient estimation

• New linesearch method balances accuracy and computational efficiency

• Speed up performance on large datasets with inexact SGD

Future Work

• Theory for inexact SGD with decreasing stepsizes (fixed accuracy)

• Inexact SGD with flexible/dynamic stepsize and accuracy regimes
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