Large-Scale Derivative-Free Optimization using Subspace Methods

Joint work with Coralia Cartis (Oxford)

Lindon Roberts, Australian National University (lindon.roberts@anu.edu.au)

SIAM Conference on Optimization 20 July 2021

Outline

- 1. Scalability of model-based DFO
- 2. Subspace DFO methods: algorithm & theory
- 3. Specialization to least-squares: numerical results

Model-Based DFO — Basic Ideas

Model-Based DFO

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

• Classically (e.g. Newton's method),

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \nabla^2 f(\mathbf{x}_k) \mathbf{s}$$

Model-Based DFO — Basic Ideas

Model-Based DFO

$$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$$

• Classically (e.g. Newton's method),

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \nabla^2 f(\mathbf{x}_k) \mathbf{s}$$

Instead, build interpolation model

$$f(\mathbf{x}_k + \mathbf{s}) \approx m_k(\mathbf{s}) = f(\mathbf{x}_k) + \mathbf{g}_k^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \mathbf{H}_k \mathbf{s}$$

- ullet Geometry of points good \Longrightarrow interpolation model Taylor-accurate \Longrightarrow convergence
- Global convergence via trust-region method

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Model-Based DFO — Theory

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ϵ accuracy guaranteed?

Accuracy order	Model-based DFO	Taylor models
1st: $\ \nabla f(\mathbf{x}_k)\ _2 \leq \epsilon$	$\mathcal{O}(n^2\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$
2nd: 1st & $\lambda_{\min}(\nabla^2 f(\boldsymbol{x}_k)) \geq -\epsilon$	$\mathcal{O}(n^9\epsilon^{-3})$	$\mathcal{O}(\epsilon^{-3})$

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016]

- ullet Same ϵ dependency as derivative-based, but scales badly with problem dimension n
- Substantial linear algebra work for interpolation and geometry management:
 - $\mathcal{O}(n^3)$ flops per iteration for linear models, $\mathcal{O}(n^6)$ for quadratic models.

Challenge

How can DFO methods be made scalable?

Model-Based DFO — Theory

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ϵ accuracy guaranteed?

Accuracy order	Model-based DFO	Taylor models
1st: $\ \nabla f(\mathbf{x}_k)\ _2 \leq \epsilon$	$\mathcal{O}(n^2\epsilon^{-2})$ $\mathcal{O}(\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$
2nd: 1st & $\lambda_{\min}(\nabla^2 f(x_k)) \geq -\epsilon$	$\mathcal{O}(n^9\epsilon^{-3})$	$\mathcal{O}(\epsilon^{-3})$

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016]

- ullet Same ϵ dependency as derivative-based, but scales badly with problem dimension n
- Substantial linear algebra work for interpolation and geometry management:
 - $-\mathcal{O}(n^3)\mathcal{O}(n)$ flops per iteration for linear models, $\mathcal{O}(n^6)$ for quadratic models.

Challenge

How can DFO methods be made scalable?

Outline

- 1. Scalability of model-based DFO
- 2. Subspace DFO methods: algorithm & theory
- 3. Specialization to least-squares: numerical results

Scalable DFO

Challenge

How can DFO methods be made scalable?

- Exploit known problem structure [Porcelli & Toint, 2020; Bandeira et al., 2012]
- Randomized finite differencing ('gradient sampling')
 [Nesterov & Spokoiny, 2017]
- Randomized direct search: sample a subset of search directions improves complexity from $\mathcal{O}(n^2\epsilon^{-2})$ to $\mathcal{O}(n\epsilon^{-2})$ [Gratton et al., 2015; Bergou et al., 2020]

Applications for scalable DFO methods include:

- Machine learning [Salimans et al., 2017; Ughi et al., 2020]
- Image analysis [Ehrhardt & R., 2021]
- Proxy for global optimization methods [Cartis, R. & Sheridan-Methven, 2021]

Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of \mathbb{R}^n

• Related to coordinate descent methods

- [Wright, 2015; Patrascu & Necoara, 2015]
- Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]
- Build on recent derivative-based analysis

[Cartis, Fowkes & Shao, 2020]

Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of \mathbb{R}^n

- Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]
- Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]
- Build on recent derivative-based analysis

[Cartis, Fowkes & Shao, 2020]

Subspace DFO framework:

- Generate subspace of dimension $p \ll n$ given by $\operatorname{col}(Q_k)$ for random $Q_k \in \mathbb{R}^{n \times p}$
- Build a low-dimensional model: find $\hat{\boldsymbol{g}}_k \in \mathbb{R}^p$, $\hat{H}_k \in \mathbb{R}^{p \times p}$ to get

$$f(\mathbf{x}_k + \mathbf{Q}_k \hat{\mathbf{s}}) \approx \hat{m}_k(\hat{\mathbf{s}}) = f(\mathbf{x}_k) + \hat{\mathbf{g}}_k^T \hat{\mathbf{s}} + \frac{1}{2} \hat{\mathbf{s}}^T \hat{H}_k \hat{\mathbf{s}},$$

- Solve subspace trust-region subproblem: $\min_{\hat{s} \in \mathbb{R}^p} \hat{m}_k(\hat{s})$ s.t. $\|\hat{s}\|_2 \leq \Delta_k$
- Benefits: fewer interpolation points needed, cheap linear algebra (everything in \mathbb{R}^p).

Subspace DFO — **Subspace Quality**

Choice of subspace: we need to make sure we search in 'good' subspaces (where there is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

$$\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$$
, for some $\alpha > 0$.

Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in 'good' subspaces (where there is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

$$\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$$
, for some $\alpha > 0$.

Key Assumption

The subspace Q_k is well-aligned with probability $1-\delta$ (whenever Q_k is resampled, independent of history), and $\|Q_k\|_2 \leq Q_{\max}$.

Why? If $\|\nabla f(\mathbf{x}_k)\|_2 \geq \epsilon$, Q_k well-aligned and \hat{m}_k fully linear, then $\|\hat{\mathbf{g}}_k\|_2 \geq \Omega(\epsilon)$

If there is still work to do, then the algorithm (probably) knows it

Subspace DFO Algorithm

RSDFO (Random Subspace DFO):

[model-based DFO, RSDFO-specific]

- 1. If FLAG, use previous $Q_k = Q_{k-1}$ and construct fully linear subspace model \hat{m}_k .
- 2. Otherwise, generate random Q_k and construct subspace model \hat{m}_k .
- 3. If $\|\hat{\boldsymbol{g}}_k\|_2$ small, ensure model fully linear and $\Delta_k \sim \|\nabla f(\boldsymbol{x}_k)\|_2$. [criticality]
- 4. Minimize model to get $\mathbf{s}_k = Q_k \hat{\mathbf{s}}_k$, evaluate $f(\mathbf{x}_k + \mathbf{s}_k)$.
- 5. Check sufficient decrease, then accept/reject step and update Δ_k :
 - If decrease: $x_{k+1} = x_k + s_k$ and $\Delta_{k+1} = \gamma_{inc}\Delta_k$, add x_{k+1} to model. [successful]
 - If no decrease and model not fully linear: $x_{k+1} = x_k$ and $\Delta_{k+1} = \Delta_k$, make model fully linear. Set FLAG=TRUE. [model-improving]
 - If no decrease and model fully linear: $x_{k+1} = x_k$ and $\Delta_{k+1} = \gamma_{\text{dec}} \Delta_k$. [unsuccessful]

Subspace DFO — Convergence

Theorem (Cartis & R., 2021)

If f is sufficiently smooth and bounded below, $\gamma_{dec} > \gamma_{inc}^{-1/2}$ and ϵ sufficiently small, then for some c, C > 0,

$$\mathbb{P}\left[\mathsf{K}_{\epsilon} \leq \frac{\mathsf{C}}{\alpha^2 (1-\delta) \epsilon^2} \right] \geq 1 - \mathsf{e}^{-c\epsilon^{-2}},$$

where K_{ϵ} is the first iteration with $\|\nabla f(\mathbf{x}_k)\|_2 \leq \epsilon$.

- ullet Matches usual $\mathcal{O}(\epsilon^{-2})$ worst-case complexity bound with high probability
- ullet Implies $\mathbb{E}\left[\mathcal{K}_{\epsilon}
 ight]=\mathcal{O}(\epsilon^{-2})$ and almost-sure convergence
- ullet Constant C depends on p (from fully linear error bounds), c depends on p and δ

Convergence Proof — Sketch

Proof sketch: while $\|\nabla f(\mathbf{x}_k)\|_2 > \epsilon$, bound number of iterations across 6 cases.

Good subspace:

- 1. Δ_k large + successful: get $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \geq \Omega(\epsilon^2)$, so happens $\mathcal{O}(\epsilon^{-2})$ times.
- 2. Δ_k large + unsuccessful: bounded by case #1 from Δ_k management.
- 3. Δ_k small + unsuccessful + good model: doesn't happen (Taylor accuracy)
- 4. Δ_k small + successful: bounded by cases #3 and #5 from Δ_k management
- 5. Δ_k small + bad model: keep Q_k and Δ_k , build good model (next time #3 or #4)

(extra difficulties: different Δ_k large/small thresholds, 4 \leftrightarrow 5, criticality steps, ...)

Bad subspace:

6. Happens with small probability δ . Need $\gamma_{\text{dec}} > \gamma_{\text{inc}}^{-1/2}$ to ensure Δ_k not decreased too quickly in these iterations.

Generating Q_k

For RSDFO to work, need to be able to generate Q_k such that

$$\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$$
 with probability $\ge 1 - \delta$.

If Q_k is a random orthonormal set (e.g. block coordinates), need $p \sim \alpha n$.

Generating Q_k

For RSDFO to work, need to be able to generate Q_k such that

$$\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$$
 with probability $\ge 1 - \delta$.

If Q_k is a random orthonormal set (e.g. block coordinates), need $p \sim \alpha n$.

Instead, make Q_k a Johnson-Lindenstrauss embedding, such as

- Q_k has i.i.d. Gaussian entries $\mathcal{N}(0,1/p)$
- Q_k has s random nonzero entries per row, value $\pm 1/\sqrt{s}$ with probability 1/2

Then, only need $p \sim (1 - \alpha)^{-2} |\log \delta|$, independent of n.

Generating Q_k

For RSDFO to work, need to be able to generate Q_k such that

$$\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$$
 with probability $\ge 1 - \delta$.

If Q_k is a random orthonormal set (e.g. block coordinates), need $p \sim \alpha n$.

Instead, make Q_k a Johnson-Lindenstrauss embedding, such as

- Q_k has i.i.d. Gaussian entries $\mathcal{N}(0,1/p)$
- Q_k has s random nonzero entries per row, value $\pm 1/\sqrt{s}$ with probability 1/2

Then, only need $p \sim (1 - \alpha)^{-2} |\log \delta|$, independent of n.

Accuracy order	Model-based DFO	RSDFO	Taylor models
1st	$\mathcal{O}(n^2\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$
2nd	$\mathcal{O}(n^9\epsilon^{-3})$??	$\mathcal{O}(\epsilon^{-3})$

Outline

- 1. Scalability of model-based DFO
- 2. Subspace DFO methods: algorithm & theory
- 3. Specialization to least-squares: numerical results

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k) + J(x_k)s$$

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k)+J(x_k)s$$

Derivative-Free Gauss-Newton

Jacobian not available: use

$$\boldsymbol{m}_k(\boldsymbol{s}) = \boldsymbol{r}(\boldsymbol{x}_k) + \boldsymbol{J}_k \boldsymbol{s}$$

• Find J_k using linear interpolation

$$\min_{\mathbf{x}\in\mathbb{R}^n} f(\mathbf{x}) = \frac{1}{2} \|\mathbf{r}(\mathbf{x})\|_2^2, \qquad \mathbf{r}(\mathbf{x}) \in \mathbb{R}^m$$

Classical Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k)+J(x_k)s$$

Derivative-Free Gauss-Newton

• Jacobian not available: use

$$\boldsymbol{m}_k(\boldsymbol{s}) = \boldsymbol{r}(\boldsymbol{x}_k) + \boldsymbol{J}_k \boldsymbol{s}$$

• Find J_k using linear interpolation

In both cases, get a local quadratic model

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = \frac{1}{2} \|\boldsymbol{m}_k(\boldsymbol{s})\|_2^2$$

Implemented in state-of-the-art solver DFO-LS

[Cartis et al., 2019]

DFO for Least-Squares

Standard method has first-order complexity $\mathcal{O}(n^6\epsilon^{-2})$: dependency on n between first & second order methods. [Cartis & R., 2019]

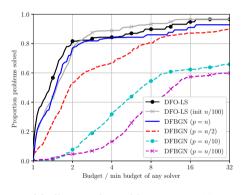
RSDFO with Gauss-Newton models gets dimension-independent $\mathcal{O}(\epsilon^{-2})$ bound.

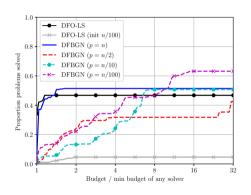
DFO for Least-Squares

Standard method has first-order complexity $\mathcal{O}(n^6\epsilon^{-2})$: dependency on n between first & second order methods. [Cartis & R., 2019]

RSDFO with Gauss-Newton models gets dimension-independent $\mathcal{O}(\epsilon^{-2})$ bound.

Practical considerations:


- Linear algebra cost of standard method is $\mathcal{O}(mn^2 + n^3)$ flops per iteration from linear interpolation, RSDFO only needs $\mathcal{O}(mp^2 + np^2)$
- Standard method reuses (possibly expensive) evaluations of r(x) across iterations, RSDFO has to resample all points from new subspace


Key idea (DFBGN): use the locations of interpolation points to define the subspace \implies cheap linear algebra and fewer evaluations! If we have interpolation points $\{x_k,y_1,\ldots,y_p\}$, then make Q_k an orthonormal basis for $\{y_1-x_k,\ldots,y_p-x_k\}$.

Numerical Results — low accuracy

DFBGN vs. DFO-LS (low accuracy $au = 10^{-1}$)

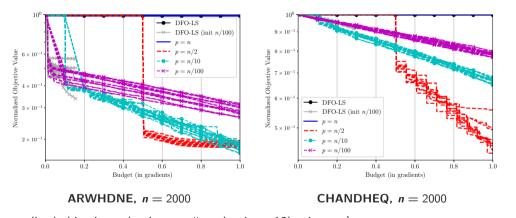
[% problems solved vs. # evals]

Medium-scale problems, $n \approx 100$

Large problems $n \approx 1000$, 12hr timeout

DFBGN performance improves with larger p. Outperforms DFO-LS on large problems...

Timeout Rate


Proportion of large problems ($n \approx 1000$) where solver times out (before usual termination):

Solver	Timeout
DFO-LS	93%
DFO-LS (init $n/100$)	98%
DFBGN $(p = n/100)$	35%
DFBGN $(p = n/10)$	74%
DFBGN $(p = n/2)$	82%
DFBGN $(p = n)$	66%

... because it doesn't time out

Numerical Results — low budget

Other advantage: DFBGN progresses after $p \ll n$ evaluations (important when n large)

(normalized objective reduction vs. # evaluations, 12hr timeout)

Conclusions & Future Work

Conclusions

- Scalability of model-based DFO is currently limited (in theory & practice)
- New algorithms reduce linear algebra cost and iteration complexity
- Novel complexity analysis with dimension-independent bounds
- DFBGN outperforms state-of-the-art code on large-scale problems

Future Work

- Second-order complexity analysis
- Efficient implementation of subspace quadratic models
- Similar strategies for direct search DFO

[arXiv:2102.12016, Github: numerical algorithms group/dfbgn]

References i

- A. S. Bandeira, K. Scheinberg, and L. N. Vicente, *Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization*, Mathematical Programming, 134 (2012), pp. 223–257.
- E. H. BERGOU, E. GORBUNOV, AND P. RICHTÁRIK, Stochastic three points method for unconstrained smooth minimization, SIAM Journal on Optimization, (2020).
- C. CARTIS, J. FIALA, B. MARTEAU, AND L. ROBERTS, *Improving the flexibility and robustness of model-based derivative-free optimization solvers*, ACM Transactions on Mathematical Software, 45 (2019), pp. 32:1–32:41.
- C. CARTIS, J. FOWKES, AND Z. SHAO, *A randomised subspace Gauss-Newton method for nonlinear least-squares*, in Workshop on "Beyond first-order methods in ML systems" at the 37th International Conference on Machine Learning, Vienna, Austria, 2020.
- C. CARTIS, N. I. M. GOULD, AND P. L. TOINT, On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization problems, SIAM Journal on Optimization, 20 (2010), pp. 2833–2852.

References ii

- C. Cartis and L. Roberts, *A derivative-free Gauss-Newton method*, Mathematical Programming Computation, 11 (2019), pp. 631–674.
- ———, Scalable subspace methods for derivative-free nonlinear least-squares optimization, arXiv preprint arXiv:2102.12016, (2021).
- C. CARTIS, L. ROBERTS, AND O. SHERIDAN-METHVEN, Escaping local minima with local derivative-free methods: a numerical investigation, Optimization, to appear (2021).
- A. R. CONN, K. SCHEINBERG, AND L. N. VICENTE, *Introduction to Derivative-Free Optimization*, vol. 8 of MPS-SIAM Series on Optimization, MPS/SIAM, Philadelphia, 2009.
- $\begin{tabular}{ll} M.~J.~Ehrhardt~and~L.~Roberts, {\it Inexact~derivative-free~optimization~for~bilevel~learning}, Journal~of~Mathematical~Imaging~and~Vision,~63~(2020),~pp.~580-600. \end{tabular}$
- R. GARMANJANI, D. JÚDICE, AND L. N. VICENTE, *Trust-region methods without using derivatives: Worst case complexity and the nonsmooth case*, SIAM Journal on Optimization, 26 (2016), pp. 1987–2011.
- S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, *Direct search based on probabilistic descent*, SIAM Journal on Optimization, 25 (2015), pp. 1515–1541.

References iii

- J. C. Gross and G. T. Parks, Optimization by moving ridge functions: Derivative-free optimization for computationally intensive functions, arXiv preprint arXiv:2007.04893, (2020).
- Y. NESTEROV AND V. SPOKOINY, Random gradient-free minimization of convex functions, Foundations of Computational Mathematics, 17 (2017), pp. 527–566.
- A. NEUMAIER, H. FENDL, H. SCHILLY, AND T. LEITNER, VXQR: Derivative-free unconstrained optimization based on QR factorizations, Soft Computing, 15 (2011), pp. 2287–2298.
- A. PATRASCU AND I. NECOARA, Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization, Journal of Global Optimization, 61 (2015), pp. 19–46.
- M. PORCELLI AND P. L. TOINT, Global and local information in structured derivative free optimization with BFO, arXiv preprint arXiv:2001.04801, (2020).
- M. J. D. POWELL, On trust region methods for unconstrained minimization without derivatives, Mathematical Programming, 97 (2003), pp. 605–623.
- T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, *Evolution strategies as a scalable alternative to reinforcement learning*, arXiv preprint arXiv:1703.03864, (2017).

References iv

- G. UGHI, V. ABROL, AND J. TANNER, An empirical study of derivative-free-optimization algorithms for targeted black-box attacks in deep neural networks, arXiv preprint arXiv:2012.01901, (2020).
- S. J. Wright, Coordinate descent algorithms, Mathematical Programming, 151 (2015), pp. 3-34.

Derivative-Free Block Gauss-Newton

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

- 1. Build low-dimensional model and calculate trust-region step $oldsymbol{s}_k = Q_k \hat{oldsymbol{s}}_k$
- 2. Evaluate $f(x_k + s_k)$, accept/reject step, and update Δ_k (as before)
- 3. Add $x_k + s_k$ to interpolation set
- 4. Remove $p_{drop} \ge 2$ points from the interpolation set
- 5. Add random orthogonal directions $x_k + \Delta_k d$ until p+1 interpolation points

Derivative-Free Block Gauss-Newton

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

- 1. Build low-dimensional model and calculate trust-region step $oldsymbol{s}_k = Q_k \hat{oldsymbol{s}}_k$
- 2. Evaluate $f(x_k + s_k)$, accept/reject step, and update Δ_k (as before)
- 3. Add $x_k + s_k$ to interpolation set
- 4. Remove $p_{drop} \ge 2$ points from the interpolation set
- 5. Add random orthogonal directions $x_k + \Delta_k d$ until p+1 interpolation points

Comments:

- $p_{drop} \ge 2$ ensures new direction(s) **d** added next iteration $\implies Q_{k+1} \ne Q_k$.
 - Practical choice: $p_{\text{drop}}=2$ on success, p/10 otherwise (geometry-aware removal)
- Linear algebra cost $\mathcal{O}(mp^2+np^2)$ vs. standard method $\mathcal{O}(mn^2+n^3)$
- Package on Github: numerical algorithms group/dfbgn

General Objective Problems

General objective case is much harder — rely on quadratic interpolation models.

2 points per subspace direction

After step, how to rotate subspace?

Subspace dimensions decoupled from interpolation directions $\boldsymbol{y}_t - \boldsymbol{x}_k$