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Further Reading

This talk is based on:

e C. Cartis & L. Roberts, Scalable subspace methods for derivative-free nonlinear

least-squares optimization, Math. Prog., 2023.

e L. Roberts & C. W. Royer, Direct search based on probabilistic descent in reduced
spaces, SIAM J. Optim., to appear.

Our software packages are:

e DFBGN for nonlinear least-squares:
https://github.com/numericalalgorithmsgroup/dfbgn

e directsearch for general problems:
https://github.com/lindonroberts/directsearch
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1. Introduction to derivative-free optimization (DFO)
2. Subspace DFO methods

3. Numerical results
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Nonlinear Optimization

Interested in unconstrained nonlinear optimization

in f
i f0)

where the objective function f : R” — R is smooth.

e f is possibly nonconvex and/or ‘black-box’
— In practice, allow inaccurate evaluations of f, e.g. noise, outcome of iterative process

e Seek local minimizer (actually, approximate stationary point: [[Vf(x)|2 < €)
Lots of high-quality algorithms available:

e Linesearch, x;.11 = x4 — aka_IVf(xk) (e.g. GD, Newton, BFGS)
e Trust-region methods (adapt well to derivative-free setting)

e Others: cubic regularization, nonlinear CG, ...
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Basic trust-region method

e Approximate f near x, with a local quadratic (Taylor) model
1
F(xk+8) ~ mi(s) = F(xi) + VF(xi) s+ 5sTv2f(xk)s
e Get step by minimizing model in a neighborhood

Sk = arg min my(s) subject to ||s|l> < Ak
seR”

e Accept/reject step and adjust A, based on quality of new point f(xx + si)

X, + s, if sufficient decrease, <— (maybe increase Ay)
Xk+1 = .
* Xk, otherwise. <— (decrease Ay)

State-of-the-art algorithm with theoretical guarantees (e.g. limy_, || VF(xk)|l2 = 0).
[Conn, Gould & Toint, 2000]
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Derivative-Free Optimization

Xiey1 = X — [V2F(xi)] TV F(x4)
1
mi(s) = f(xx) + VF(xk) s+ 5sTv2f(xk)s
e How to calculate derivatives of f in practice?
— Write code by hand

— Finite differences
— Algorithmic differentiation /backpropagation
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Derivative-Free Optimization

X1 = Xi — [V2F(x)] 7'V F(xk)

1
mi(s) = f(xx) + VF(xk) s+ 5sTv2f(xk)s

e How to calculate derivatives of f in practice?

— Write code by hand

— Finite differences

— Algorithmic differentiation /backpropagation
e Difficulties when function evaluation is

— Black-box

— Noisy

— Computationally expensive
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Derivative-Free Optimization

X1 = Xi — [V2F(x)] 7'V F(xk)

1
mi(s) = f(xx) + VF(xk) s+ 5sTv2f(xk)s

e How to calculate derivatives of f in practice?

— Write code by hand

— Finite differences

— Algorithmic differentiation /backpropagation
e Difficulties when function evaluation is

— Black-box

— Noisy

— Computationally expensive

e Alternative — derivative-free optimization (DFO)
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Applications

Application 1: Climate Modelling [Tett et al., 2022]

e Parameter calibration for global climate models
e One model run = simulate global climate for 5 years (expensive!)

e Very complicated, chaotic physics (black-box & noisy!)

180° 120°W 60°W 0°w 60°E 120°E 180°
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Applications

Application 2: Adversarial Example Generation [Alzantot et al., 2019]

e Find perturbations of neural network inputs which are misclassified
e Neural network structure assumed to be unknown (black-box!)
e Want to test very few examples (= expensive!)

+.007 x

“panda”

“gibbon”
57.7% confidence 99.3 % confidence

Image from [Goodfellow et al., 2015]
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Model-Based DFO

DFO Method 1: Model-Based DFO

e Using trust-region framework, build a model
1
f(xi+58)~ m(s) =f(xe)+ g, s+ ESTH;(S

and find g, and Hy without using derivatives
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Model-Based DFO

DFO Method 1: Model-Based DFO
e Using trust-region framework, build a model
1
f(Xk + S) ~ mk(s) = f(xk) +ngS + ESTH;(S

and find g, and Hy without using derivatives
e How? Interpolate f over a set of points — find g, Hy such that

mi(y — xi) = f(y), Vyey
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Model-Based DFO

DFO Method 1: Model-Based DFO
e Using trust-region framework, build a model
1
f(Xk + S) ~ mk(s) = f(xk) +ngS + ESTH;(S

and find g, and Hy without using derivatives
e How? Interpolate f over a set of points — find g, Hy such that

m(y —xi) = f(y), Vye)l
For convergence, need my to be fully linear:
f(xk +8) — m(s)| < O(AZ)  and  ||[VF(xk +5) — Vm(s)]l2 < O(Ak)

Achievable if points in ) are well-spaced (in a specific sense).
[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Example: Model-Based DFO

1. Choose interpolation set
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Example: Model-Based DFO

2. Interpolate & minimize...
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Example: Model-Based DFO

3. Add new point to interpolation set (replace a bad point)

Subspace DFO Methods — Lindon Roberts (1indon.roberts@sydney.edu.au) 9



Example: Model-Based DFO

4. Repeat with new interpolation set & model
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Example: Model-Based DFO

4. Repeat with new interpolation set & model
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Direct Search DFO

DFO Method 2: Direct Search

e Given x4 and Ay, choose a set Dy C R" of m vectors
e If there exists dy € Dy with f(xx + Axdy) < f(xk) — %Ai”dkH%:
— Set xy41 = xx + Agdy and increase Ay

e Otherwise, set xx11 = Xk and decrease Ay
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Direct Search DFO

DFO Method 2: Direct Search

e Given x4 and Ay, choose a set Dy C R" of m vectors
e If there exists dy € Dy with f(xx + Axdy) < f(xk) — %Ai”dkH%:
— Set xy41 = xx + Agdy and increase Ay
e Otherwise, set xx11 = Xk and decrease Ay
For convergence, need Dy to be xk-descent:
—d"Vf(x)
max > ke (0,1
3B Tl Vel = €O

i.e. there is a vector d making an acute angle with —Vf(x) (descent direction).

Examples: {+ei,...,+e,} with k =1/\/nor {e1,...,e,, —e} with k ~ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]
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Example: Direct Search

Modified from [Kolda, Lewis & Torczon, 2003]
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Example: Direct Search

*

Modified from [Kolda, Lewis & Torczon, 2003]
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Complexity Theory

Analyze methods using worst-case complexity: how long before ||V f(xy)|[2 < €7

Metric Deriv-based | Model-based | Direct search
Iterations O(e72) O(n?c2) O(ne~?)
Evaluations  ~ O(ne2) O(n3e?) O(n?e2)

[Cartis, Gould & Toint, 2010; Garmanjani, Jiadice & Vicente, 2016; Vicente, 2013]

e Same € dependency as derivative-based, but scales badly with problem dimension n

e Model-based DFO also has substantial linear algebra work for interpolation and
geometry management: at least O(n3) flops per iteration

Challenge

How can DFO methods be made scalable?
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Complexity Theory

Analyze methods using worst-case complexity: how long before ||V f(xy)|[2 < €7

Metric Deriv-based Model-based Direct search
Iterations O(e7?) O(n?e72) O(ne~?)
Evaluations =~ O(ne™?) | Or3e=2 O(n?c2?) | Or2e=2) O(ne2)

[Cartis, Gould & Toint, 2010; Garmanjani, Jiadice & Vicente, 2016; Vicente, 2013]

e Same e dependency as derivative-based, but seales-badly-with-problem-dimension—n

e Model-based DFO also has substantial linear algebra work for interpolation and

geometry management: at least &{n3) ((n) flops per iteration
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Scalable DFO

Challenge

How can DFO methods be made scalable?

e Exploit known problem structure [Porcelli & Toint, 2020; Bandeira et al., 2012]

e Randomized finite differencing (‘gradient sampling’) [Nesterov & Spokoiny, 2017]

Applications for scalable DFO methods include:

e Machine learning [Salimans et al., 2017; Ughi et al., 2020]
e Image analysis [Ehrhardt & R., 2021]
e Proxy for global optimization methods [Cartis, R. & Sheridan-Methven, 2021]
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Randomized DFO

Challenge

How can DFO methods be made scalable?

Randomization is a promising approach:

e Make model fully linear with probability < 1 [Gratton et al., 2017]
e Make search directions k-descent with probability <1 [Gratton et al., 2015]
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Randomized DFO

Challenge

How can DFO methods be made scalable?

Randomization is a promising approach:

e Make model fully linear with probability < 1 [Gratton et al., 2017]
e Make search directions k-descent with probability <1 [Gratton et al., 2015]

Problem: Improves complexity for direct search, but not for model-based!

Why? Direct search formulation effectively allows dimensionality reduction (sample < n

directions).

Use dimensionality reduction techniques suitable for both DFO classes.
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Randomization for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose X is a set of N points in RY and ¢ € (0,1). Let A € RPX9 be a matrix with
i.i.d. N(0, p=2) entries and p ~ log(N)/e. Then with high probability,

(I=olx—yl2 < A=Ayl < (1T +e)lIx —yl2, WX,y € X.
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Randomization for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose X is a set of N points in RY and ¢ € (0,1). Let A € RPX9 be a matrix with
i.i.d. N(0, p=2) entries and p ~ log(N)/e. Then with high probability,

(I=olx—yl2 < A=Ayl < (1T +e)lIx —yl2, WX,y € X.

e Random projections approximately preserve distances (& inner products, norms, ...)
e Reduced dimension p depends only on # of points N, not the ambient dimension d'!

e Other random constructions satisfy J-L Lemma (Haar subsampling, hashing, ...)
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Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of R”

e Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]
e Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]

e Build on recent derivative-based analysis [Cartis, Fowkes & Shao, 2020]
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Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of R”

e Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]

e Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]

e Build on recent derivative-based analysis [Cartis, Fowkes & Shao, 2020]

Subspace DFO framework:

e Generate subspace of dimension p < n given by col(Py) for random P, € R"*P

e Model-based: build a low-dimensional model i (8) which is fully linear for
f(8) == f(xx + Pi8) : RP - R
e Direct search: choose Dx C RP which is k-descent for P/ Vf(x,) € RP
Fewer interpolation/sample points needed, cheap linear algebra (everything in RP)
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Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there
is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if
IPIVF(x)l|2 > ol VF(xi)]2, for some « > 0.

i.e. if there is still work to do, then we know this by only inspecting f in the subspace.
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Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if
IPIVF(x)l|2 > ol VF(xi)]2, for some « > 0.

i.e. if there is still work to do, then we know this by only inspecting f in the subspace.

Key Assumption

The subspace Py is well-aligned with probability 1 — 9.

Using J-L lemma, choose p ~ (1 — a)72|log §| = O(1) independent of n.
Note: if randomly select p coordinates (block coordinate descent), need p ~ an.
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Subspace DFO — Complexity

Theorem (Cartis & R., 2023; R. & Royer, 2023)

If f is sufficiently smooth and bounded below and € sufficiently small, then

IP) |:K6 S (:.(p7 a, 6)6_2] Z 1 _ e—c(p7a’§)6—2,

where K. is the first iteration with ||Vf(x)|l2 < e.

e Implies E [K.] = O(e~?) and almost-sure convergence

e O(p) evaluations per iteration, so same bounds for evaluation complexity
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Subspace DFO — Complexity

Standard methods:

Metric Deriv-based | Model-based | Direct search
Iterations O(e72) O(n?c2) O(ne~2)
Evaluations  ~ O(ne2) O(n3c2) O(n%¢72)

Model-based DFO has O(n?) linear algebra work per iteration.

Using random subspaces:

Metric Deriv-based | Model-based | Direct search
Iterations O(e7?) O(n?c2) O(ne~?)
Evaluations  ~ O(ne~?) O(n?e2) O(ne~?)

Model-based DFO has O(n) linear algebra work per iteration.
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Software Packages

Open-source Python packages available on Github

Model-Based

DFBGN for nonlinear least-squares (numerical algorithms group/dfbgn)
1 2 1 —
min — ==
xeRn 2 H 2 2 z_;
Subspace method with several heuristics to improve performance

Direct Search

directsearch (lindonroberts/directsearch)
Many varieties of direct search methods (classical, random, subspaces) with multiple
Dy generation methods.
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Numerical Results — DFBGN

DFBGN vs. DFO-LS (low accuracy 7 = 1071) [% problems solved vs. # evals]
10 — 10
—e— DFO-LS
__________ DFO-LS (init n/100)
| —— DFBGN (p=n)
——- DFBGN (p =n/2)
] 4 DFBGN (p = n/10)
z - ,_.--":'_’_’;,__ g DFBGN (p = n/100) VSP & ittt
2 A 3 — /
2 ’ S o +iain-duinh inin-oi
= e o = Ve i p
E —e— DFO-LS 2 0.4 x’l ", _,'
5 W DFU»?g (init n/100) z B e e !
£ X — DFBGN (p=n) 2 = ¥
——- DFBGN (p=n/2) 0.2 Vi i
-e DFBGN (p = n/10) P Ay
== DFBGN (p = n/100) S
0.0 T T T T 0.0 T T T T
1 2 4 8 16 32 1 2 4 8 16 32
Budget / min budget of any solver Budget / min budget of any solver
Medium-scale problems, n =~ 100 Large problems n = 1000, 12hr timeout

DFBGN is more suitable for low accuracy solutions, performance improves with larger p

(except for timeouts!)
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Numerical Results — Direct Search

Direct search comparisons (low accuracy 7 = 1071) [% problems solved vs. # evals]
1.0 1.0
—e— DSn+1 —e— DSn+1
DS 2n DS 2n
084 = Prob DS 0.8 —— Prob DS
E — STP E — STP
K —=- Gaussian r =1 E] ——- Gaussianr =1
206 Hashing r = 1 206 Hashing r = 1
ig - Orthog r =1 k- —=- Orthogr =1
! §
0.2
0.0 0.0
1 2 4 8 16 32 1 2 4 8 16 32
Budget / min budget of any solver Budget / min budget of any solver
Medium-scale problems, n =~ 100 Large problems n = 1000

Subspace methods match randomized methods and outperform classical methods,

performance best with small p
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Numerical Results — low budget

Subspace methods progress after p < n evaluations (important when n large)

Y DFO-LS —o— DS2n

i e 0.94 — Prob DS

H DFO-LS (init n/100)

H -=-= STP

I p=r Gaussi 1

, . —-— Gaussian r =
E 6x 107" : == p=n/2
; | p=n/10
2 I —x= p=n/100
g ]
= 4ax107!
pe
]
2 o3x107t
B
15
z
2 107"
0.82
0.0 0.2 0.4 0.6 0.8 10 0 10 20 30 40 50
Budget (in gradients) Budget in evals (gradients)
DFBGN directsearch

(normalized objective reduction vs. # evaluations, 12hr timeout)
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Conclusions & Future Work

Conclusions

e Scalability of model-based DFO is currently limited (in theory & practice)
e Randomized projections are effective for dimensionality reduction

e New algorithms reduce linear algebra cost and iteration complexity

e Practical implementations available

Future Work

Second-order complexity analysis

Efficient implementation of subspace quadratic models (model-based)
Problems with constraints
Comparison of different choices of p:

— New work (~ 3 weeks ago!) studying this [Hare, R. & Royer, 2023]
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