A Dynamic Linesearch Method for Bilevel Learning

Joint work with Mohammad Sadegh Salehi (Bath), Matthias Ehrhardt (Bath), Subhadip Mukherjee (IIT Kharagpur)

Lindon Roberts, University of Sydney (lindon.roberts@sydney.edu.au)

SigmaOpt Workshop (University of South Australia) 16 February 2024

- 1. Bilevel learning
- 2. Dynamic linesearch
- 3. Numerical results

Variational Regularization

Many inverse problems can be posed in the form

```
\min_{x} \mathcal{D}(Ax, y) + \alpha \mathcal{R}(x),
```

where we wish to find x given data $y \approx Ax$.

$$\min_{x} \mathcal{D}(Ax, y) + \alpha \mathcal{R}(x),$$

where we wish to find x given data $y \approx Ax$.

Example (image denoising): given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

$$\min_{x} \mathcal{D}(Ax, y) + \alpha \mathcal{R}(x),$$

where we wish to find x given data $y \approx Ax$.

Example (image denoising): given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

$$\min_{x} \mathcal{D}(Ax, y) + \alpha \mathcal{R}(x),$$

where we wish to find x given data $y \approx Ax$.

Example (image denoising): given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

$$\min_{x} \mathcal{D}(Ax, y) + \alpha \mathcal{R}(x),$$

where we wish to find x given data $y \approx Ax$.

Example (image denoising): given a noisy image y, find a denoised image x by solving:

$$\min_{x} \underbrace{\frac{1}{2} \|x - y\|_{2}^{2}}_{\mathcal{D}(x,y)} + \alpha \underbrace{\sum_{j} \sqrt{\|\nabla x_{j}\|_{2}^{2} + \nu^{2}}}_{\approx \mathrm{TV}(x)} + \frac{\xi}{2} \|x\|_{2}^{2}$$

Recovered solution depends strongly on problem parameters (e.g. α , ν and ξ)

Question

How to choose good problem parameters?

Recovered solution depends strongly on problem parameters (e.g. α , ν and ξ)

Question

How to choose good problem parameters?

- Trial & error
- L-curve criterion
- Bilevel learning data-driven approach

Suppose we have training data $(x_1, y_1), \ldots, (x_n, y_n)$ — ground truth and noisy observations.

Attempt to recover x_i from y_i by solving inverse problem with parameters $\theta \in \mathbb{R}^m$:

$$\hat{x}_i(\theta) := \operatorname*{arg\,min}_x \Phi_i(x, \theta), \quad \text{e.g. } \Phi_i(x, \theta) = \mathcal{D}(Ax, y_i) + \theta \mathcal{R}(x).$$

Try to find θ by making $\hat{x}_i(\theta)$ close to x_i

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \|\hat{x}_i(\theta) - x_i\|^2 + \mathcal{J}(\theta),$$

with optional (smooth) term $\mathcal{J}(\theta)$ to encourage particular choices of θ .

The bilevel learning problem is:

$$\begin{split} \min_{\theta} \quad f(\theta) &:= \frac{1}{n} \sum_{i=1}^{n} \|\hat{x}_{i}(\theta) - x_{i}\|^{2} + \mathcal{J}(\theta), \\ \text{s.t.} \quad \hat{x}_{i}(\theta) &:= \argmin_{x} \Phi_{i}(x,\theta), \quad \forall i = 1, \dots, n \end{split}$$

- If Φ_i are strongly convex in x and sufficiently smooth in x and θ, then x̂_i(θ) is well-defined and continuously differentiable.
- Upper-level problem $(\min_{\theta} f(\theta))$ is a smooth nonconvex optimization problem

Many use cases in data science: learning image regularizers, hyperparameter tuning, data hypercleaning, ...

- 1. Bilevel learning
- 2. Dynamic linesearch
- 3. Numerical results

Bilevel Learning

Difficulty?

Bilevel learning is just a smooth nonconvex problem — where is the challenge?

Bilevel Learning

Difficulty?

Bilevel learning is just a smooth nonconvex problem — where is the challenge?

- Can't evaluate lower-level minimizers $\hat{x}_i(\theta)$ exactly, so can never get exact $f(\theta)$ or $\nabla f(\theta)$ [Kunisch & Pock, 2013; Sherry et al., 2020]
- <u>But</u> can evaluate f and ∇f to arbitrary accuracy (with significant computational cost)
 [Berahas et al., 2021; Cao et al., 2022]
- Potentially large scale: both lower-level problems and upper-level problem.
 - Many people looking at SGD-type methods (at both levels). Not usually used for variational problems, so not a focus here.
 e.g. [Grazzi et al., 2021; Ji et al., 2021]

Bilevel Learning

Difficulty?

Bilevel learning is just a smooth nonconvex problem — where is the challenge?

- Can't evaluate lower-level minimizers $\hat{x}_i(\theta)$ exactly, so can never get exact $f(\theta)$ or $\nabla f(\theta)$ [Kunisch & Pock, 2013; Sherry et al., 2020]
- <u>But</u> can evaluate f and ∇f to arbitrary accuracy (with significant computational cost)
 [Berahas et al., 2021; Cao et al., 2022]
- Potentially large scale: both lower-level problems and upper-level problem.
 - Many people looking at SGD-type methods (at both levels). Not usually used for variational problems, so not a focus here.
 e.g. [Grazzi et al., 2021; Ji et al., 2021]

Key question: how to find good evaluation accuracy to get (i) guaranteed convergence, (ii) without requiring hyperparameter tuning, (iii) at a reasonable computational cost?

First, how do we evaluate $f(\theta)$ and $\nabla f(\theta)$?

x̂(θ) is minimiser of smooth, strongly convex problem — given *ε*, use standard first-order methods (e.g. GD) to get *x_ε* = *x_ε*(θ) with ||*x_ε* − *x̂*(θ)|| ≤ *ε*

First, how do we evaluate $f(\theta)$ and $\nabla f(\theta)$? [Ehrhardt & LR, 2023]

- x̂(θ) is minimiser of smooth, strongly convex problem given ε, use standard first-order methods (e.g. GD) to get x_ε = x_ε(θ) with ||x_ε − x̂(θ)|| ≤ ε
- For an objective $g(\hat{x}(\theta))$, Implicit Function Theorem gives

$$\nabla_{\theta}g = -[\partial_{x}\partial_{\theta}\Phi(\hat{x}(\theta),\theta)]^{T}[\partial_{xx}\Phi(\hat{x}(\theta),\theta)]^{-1}\nabla_{x}g(\hat{x}(\theta))$$

First, how do we evaluate $f(\theta)$ and $\nabla f(\theta)$? [Ehrhardt & LR, 2023]

- x̂(θ) is minimiser of smooth, strongly convex problem given ε, use standard first-order methods (e.g. GD) to get x_ε = x_ε(θ) with ||x_ε − x̂(θ)|| ≤ ε
- For an objective $g(\hat{x}(\theta))$, Implicit Function Theorem gives

 $\nabla_{\theta}g = -[\partial_{\mathsf{x}}\partial_{\theta}\Phi(\hat{\mathsf{x}}(\theta),\theta)]^{\mathsf{T}}[\partial_{\mathsf{x}\mathsf{x}}\Phi(\hat{\mathsf{x}}(\theta),\theta)]^{-1}\nabla_{\mathsf{x}}g(\hat{\mathsf{x}}(\theta))$

- Given δ , use CG to find $q_{\epsilon,\delta}$ such that $\|[\partial_{xx}\Phi(x_{\epsilon},\theta)]q_{\epsilon,\delta} \nabla_{x}g(x_{\epsilon})\| \leq \delta$
- Use approximate gradient $-[\partial_x \partial_\theta \Phi(\mathbf{x}_{\epsilon}, \theta)]^T q_{\epsilon, \delta}$

First, how do we evaluate $f(\theta)$ and $\nabla f(\theta)$? [Ehrhardt & LR, 2023]

- x̂(θ) is minimiser of smooth, strongly convex problem given ε, use standard first-order methods (e.g. GD) to get x_ε = x_ε(θ) with ||x_ε − x̂(θ)|| ≤ ε
- For an objective $g(\hat{x}(\theta))$, Implicit Function Theorem gives

 $\nabla_{\theta} g = - [\partial_{\mathsf{x}} \partial_{\theta} \Phi(\hat{\mathsf{x}}(\theta), \theta)]^{\mathsf{T}} [\partial_{\mathsf{x}\mathsf{x}} \Phi(\hat{\mathsf{x}}(\theta), \theta)]^{-1} \nabla_{\mathsf{x}} g(\hat{\mathsf{x}}(\theta))$

- Given δ , use CG to find $q_{\epsilon,\delta}$ such that $\|[\partial_{xx}\Phi(\mathbf{x}_{\epsilon},\theta)]\mathbf{q}_{\epsilon,\delta} \nabla_{\mathbf{x}}g(\mathbf{x}_{\epsilon})\| \leq \delta$
- Use approximate gradient $-[\partial_x \partial_\theta \Phi(\mathbf{x}_{\epsilon}, \theta)]^T q_{\epsilon, \delta}$
- Total gradient error is $\mathcal{O}(\epsilon+\delta+\epsilon^2+\epsilon\delta)$ with computable constants

Note: this is equivalent to an accelerated version of backpropagation applied to the lower-level solver iteration. [Mehmood & Ochs, 2020]

Linesearch Framework

The underlying algorithmic approach is gradient descent with backtracking Armijo linesearch: e.g. [Nocedal & Wright, 2006]

For j = 0, 1, 2, ...,

- New candidate point $\hat{\theta} = \theta_k \alpha \rho^j \nabla f(\theta_k)$, some $\alpha > 0$ and $\rho \in (0, 1)$.
- Check for sufficient decrease:

$$f(\hat{\theta}) \leq f(\theta_k) - \lambda \alpha \rho^j \|\nabla f(\theta_k)\|^2,$$

for some $\lambda \in (0,1)$.

• If sufficient decrease, $\theta_{k+1} = \hat{\theta}$ and stop loop; otherwise, try next value of j.

Linesearch Framework

The underlying algorithmic approach is gradient descent with backtracking Armijo linesearch: e.g. [Nocedal & Wright, 2006]

For j = 0, 1, 2, ...,

- New candidate point $\hat{\theta} = \theta_k \alpha \rho^j \nabla f(\theta_k)$, some $\alpha > 0$ and $\rho \in (0, 1)$.
- Check for sufficient decrease:

$$f(\hat{\theta}) \leq f(\theta_k) - \lambda \alpha \rho^j \| \nabla f(\theta_k) \|^2,$$

for some $\lambda \in (0,1)$.

• If sufficient decrease, $\theta_{k+1} = \hat{\theta}$ and stop loop; otherwise, try next value of j.

Basic proof ideas: Taylor's theorem and $\lambda < 1$ guarantee some j eventually gives sufficient decrease. Slow decrease in stepsize $\alpha \rho^j$ guarantees stepsize never too small, so $f(\theta_k) - f(\theta_{k+1}) \ge \mathcal{O}(\|\nabla f(\theta_k)\|^2)$. Bilevel Learning — Lindon Roberts (lindon.roberts@sydney.edu.au) To handle inexactness, there are two key issues to resolve:

- Given $z_k \approx \nabla f(\theta_k)$ can we guarantee z_k is a descent direction?
- If no sufficient decrease (with inexact f(θ) evaluations), should we shrink stepsize or improve accuracy in f (or ∇f)?

To handle inexactness, there are two key issues to resolve:

- Given $z_k \approx \nabla f(\theta_k)$ can we guarantee z_k is a descent direction?
- If no sufficient decrease (with inexact f(θ) evaluations), should we shrink stepsize or improve accuracy in f (or ∇f)?

To be practical, we don't want to make accuracy in f or ∇f unnecessarily high (but don't want to lose convergence guarantees either).

Inexact Gradient Calculation

- Given ϵ and δ , calculate inexact lower-level minimiser x_{ϵ} and inexact gradient $z_k \approx \nabla f(\theta_k)$ (using CG with residual tolerance δ)
- Calculate computable upper bound ω for $\|z_k \nabla f(\theta_k)\|$
- If $\omega \leq (1 \eta) \|z_k\|$, then use z_k (guaranteed descent direction)
- Otherwise, decrease ϵ and δ by a constant factor and start again

Inexact Gradient Calculation

- Given ϵ and δ , calculate inexact lower-level minimiser x_{ϵ} and inexact gradient $z_k \approx \nabla f(\theta_k)$ (using CG with residual tolerance δ)
- Calculate computable upper bound ω for $||z_k \nabla f(\theta_k)||$
- If $\omega \leq (1 \eta) \|z_k\|$, then use z_k (guaranteed descent direction)
- Otherwise, decrease ϵ and δ by a constant factor and start again

Theorem

If $\|\nabla f(\theta_k)\| \neq 0$, then z_k is a descent direction for all sufficiently small ϵ and δ .

i.e. Gradient calculation terminates in finite time.

Inexact sufficient decrease condition

- Given $\hat{\theta} = \theta_k \alpha_k z_k$, compute $x_{\epsilon}(\theta_k)$ and $x_{\epsilon}(\hat{\theta})$ to accuracy ϵ
- Compute approximate objective values $\tilde{f}(\theta_k)$ and $\tilde{f}(\hat{\theta})$
- Inexact sufficient decrease condition is (for *L*-smooth and convex *f*):

$$\tilde{f}(\hat{\theta}) \leq \tilde{f}(\theta_k) - \lambda \alpha_k \|z_k\|^2 - \|\nabla_x f(x_\epsilon(\hat{\theta}))\|\epsilon - \|\nabla_x f(x_\epsilon(\theta_k))\|\epsilon - \frac{1}{2}L\epsilon^2$$

.....

Inexact sufficient decrease condition

- Given $\hat{\theta} = \theta_k \alpha_k z_k$, compute $x_{\epsilon}(\theta_k)$ and $x_{\epsilon}(\hat{\theta})$ to accuracy ϵ
- Compute approximate objective values $\tilde{f}(\theta_k)$ and $\tilde{f}(\hat{\theta})$
- Inexact sufficient decrease condition is (for *L*-smooth and convex *f*):

$$\widetilde{f}(\hat{ heta}) \leq \widetilde{f}(heta_k) - \lambda lpha_k \|z_k\|^2 - \|
abla_{\mathsf{x}} f(x_\epsilon(\hat{ heta}))\|\epsilon - \|
abla_{\mathsf{x}} f(x_\epsilon(heta_k))\|\epsilon - \frac{1}{2}L\epsilon^2$$

Theorem

• If inexact sufficient decrease condition holds, then $f(\hat{\theta}) \leq f(\theta_k) - \lambda \alpha_k ||z_k||^2$.

Inexact sufficient decrease condition

- Given $\hat{\theta} = \theta_k \alpha_k z_k$, compute $x_{\epsilon}(\theta_k)$ and $x_{\epsilon}(\hat{\theta})$ to accuracy ϵ
- Compute approximate objective values $\tilde{f}(\theta_k)$ and $\tilde{f}(\hat{\theta})$
- Inexact sufficient decrease condition is (for *L*-smooth and convex *f*):

$$\widetilde{f}(\hat{ heta}) \leq \widetilde{f}(heta_k) - \lambda lpha_k \|z_k\|^2 - \|
abla_{\mathsf{x}} f(x_\epsilon(\hat{ heta}))\|\epsilon - \|
abla_{\mathsf{x}} f(x_\epsilon(heta_k))\|\epsilon - rac{1}{2}L\epsilon^2$$

Theorem

- If inexact sufficient decrease condition holds, then $f(\hat{\theta}) \leq f(\theta_k) \lambda \alpha_k ||z_k||^2$.
- For any ϵ , inexact sufficient decrease condition holds for all $\alpha_k \in [\alpha_{\min}(\epsilon), \alpha_{\max}(\epsilon)]$

Inexact sufficient decrease condition

- Given $\hat{\theta} = \theta_k \alpha_k z_k$, compute $x_{\epsilon}(\theta_k)$ and $x_{\epsilon}(\hat{\theta})$ to accuracy ϵ
- Compute approximate objective values $\tilde{f}(\theta_k)$ and $\tilde{f}(\hat{\theta})$
- Inexact sufficient decrease condition is (for *L*-smooth and convex *f*):

$$\widetilde{f}(\hat{ heta}) \leq \widetilde{f}(heta_k) - \lambda lpha_k \|z_k\|^2 - \|
abla_x f(x_\epsilon(\hat{ heta}))\|\epsilon - \|
abla_x f(x_\epsilon(heta_k))\|\epsilon - rac{1}{2}L\epsilon^2$$

Theorem

- If inexact sufficient decrease condition holds, then $f(\hat{\theta}) \leq f(\theta_k) \lambda \alpha_k ||z_k||^2$.
- For any ϵ , inexact sufficient decrease condition holds for all $\alpha_k \in [\alpha_{\min}(\epsilon), \alpha_{\max}(\epsilon)]$
- As $\epsilon \to 0$, we have $[\alpha_{\min}(\epsilon), \alpha_{\max}(\epsilon)] \to [0, \alpha_{\max}]$ for some $\alpha_{\max} > 0$

Inexact Backtracking

Inexact Backtracking (single iteration k)

1: for $J_{\text{max}} = J_0, J_0+1, J_0+2, \dots$ do

- 2: Compute inexact gradient z_k (possibly reducing ϵ and δ)
- 3: for $j = 0, \ldots, J_{\max} 1$ do
- 4: If sufficient decrease with stepsize $\alpha_k = \alpha \rho^j$, go to line 8
- 5: end for
- 6: Reduce ϵ and δ by constant factor (backtracking failed, need higher accuracy)
- 7: end for
- 8: Set $\theta_{k+1} = \theta_k \alpha_k z_k$ (successful linesearch)
- 9: Increase ϵ and δ by constant factor for next iteration

Inexact Backtracking

Inexact Backtracking (single iteration k)

1: for $J_{\text{max}} = J_0, J_0+1, J_0+2, \dots$ do

- 2: Compute inexact gradient z_k (possibly reducing ϵ and δ)
- 3: for $j=0,\ldots,J_{\mathsf{max}}-1$ do
- 4: If sufficient decrease with stepsize $\alpha_k = \alpha \rho^j$, go to line 8
- 5: end for
- 6: Reduce ϵ and δ by constant factor (backtracking failed, need higher accuracy)
- 7: end for
- 8: Set $\theta_{k+1} = \theta_k \alpha_k z_k$ (successful linesearch)
- 9: Increase ϵ and δ by constant factor for next iteration

Theorem

At each iteration k, successful linesearch occurs in finite time. Hence $\|\nabla f(\theta_k)\| \to 0$.

- 1. Bilevel learning
- 2. Dynamic linesearch
- 3. Numerical results

Quadratic Problem

Simple linear least-squares problem (closed form for true solution):

$$\min_{\theta} f(\theta) := \|A_1 \hat{x}(\theta) - b_1\|^2 \qquad \text{s.t. } \hat{x}(\theta) = \arg\min_{x} \Phi(x, \theta) := \|A_2 x + A_3 \theta - b_2\|^2$$

Quadratic Problem

Simple linear least-squares problem (closed form for true solution):

$$\min_{\theta} f(\theta) := \|A_1 \hat{x}(\theta) - b_1\|^2 \qquad \text{s.t. } \hat{x}(\theta) = \arg\min_{x} \Phi(x,\theta) := \|A_2 x + A_3 \theta - b_2\|^2$$

Do hyperparameters (initial accuracies ϵ and δ) matter?

Dynamic accuracy is better than fixed accuracy

Optimality gap vs. computational work (lower-level + CG iterations)

Field of Experts Image Denoising

$$\begin{split} \min_{\theta} f(\theta) &:= \frac{1}{N} \sum_{i=1}^{N} \|\hat{x}_{i}(\theta) - x_{i}^{*}\|^{2}, \\ \text{s.t. } \hat{x}_{i}(\theta) &= \arg\min_{x} \Phi_{i}(x, \theta) := \frac{1}{2} \|x - y_{i}\|^{2} + \sum_{k=1}^{K} \beta_{k}(\theta) \|c_{k}(\theta) * x\|_{k, \theta} + \frac{\mu}{2} \|x\|^{2}. \end{split}$$

Learn K = 30 filters $c_k(\theta)$, smoothed ℓ_1 -norms $\|\cdot\|_{k,\theta}$ and weights $\beta_k(\theta)$ to reconstruct noisy 2D images (≈ 1500 hyperparameters θ).

Using N = 25 training images (x_i^*, y_i) of size 96×96 pixels.

Field of Experts Denoising

Apply learned filters on new test image

True image

Noisy (PSNR 20.0dB)

Denoised (PSNR 28.7dB)

(Palladian Bridge, Bath, UK)

Conclusions & Future Work

Conclusions

- Bilevel learning provides a structured hyperparameter tuning method
- New linesearch method balances accuracy and computational efficiency
- Strong practical performance and robust to algorithm parameter choices
 - Outperforms other existing approaches (e.g. prescribed accuracy schedule, inexact derivative-free methods)
 [Pedregosa, 2016; Ehrhardt & LR, 2021]

Future Work

- Handle large training sets with SGD-type methods
- Extensions to non-strongly convex lower-level problems

Preprint: https://arxiv.org/abs/2308.10098 (substantial revisions coming soon)

A. S. BERAHAS, L. CAO, AND K. SCHEINBERG, *Global convergence rate analysis of a generic line search algorithm with noise*, SIAM Journal on Optimization, 31 (2021), pp. 1489–1518.

L. CAO, A. S. BERAHAS, AND K. SCHEINBERG, *First- and second-order high probability complexity bounds for trust-region methods with noisy oracles*, arXiv preprint 2205.03667, (2022).

M. J. EHRHARDT AND L. ROBERTS, *Inexact derivative-free optimization for bilevel learning*, Journal of Mathematical Imaging and Vision, 63 (2021), pp. 580–600.

M. J. EHRHARDT AND L. ROBERTS, *Analyzing inexact hypergradients for bilevel learning*, IMA Journal of Applied Mathematics, (2023).

R. GRAZZI, M. PONTIL, AND S. SALZO, *Convergence properties of stochastic hypergradients*, in Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021, vol. 130, 2021, pp. 3826–3834.

K. JI, J. YANG, AND Y. LIANG, *Bilevel optimization for machine learning: Algorithm design and convergence analysis*, in Proceedings of the 38th International Conference on Machine Learning, 2021, pp. 4882–4892.

K. KUNISCH AND T. POCK, A Bilevel Optimization Approach for Parameter Learning in Variational Models, SIAM Journal on Imaging Sciences, 6 (2013), pp. 938–983.

S. MEHMOOD AND P. OCHS, Automatic differentiation of some first-order methods in parametric optimization, in Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Palermo, Italy, 2020.

J. NOCEDAL AND S. J. WRIGHT, *Numerical Optimization*, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2nd ed., 2006.

F. PEDREGOSA, *Hyperparameter optimization with approximate gradient*, in Proceedings of the 33rd International Conference on Machine Learning, New York, 2016.

F. SHERRY, M. BENNING, J. C. DE LOS REYES, M. J. GRAVES, G. MAIERHOFER, G. WILLIAMS, C.-B. SCHONLIEB, AND M. J. EHRHARDT, *Learning the sampling pattern for MRI*, IEEE Transactions on Medical Imaging, 39 (2020), pp. 4310–4321.