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Variational Regularization

Many inverse problems can be posed in the form

min
x

D(Ax , y) + αR(x),

where we wish to find x given data y ≈ Ax .

Example (image denoising): given a noisy image y , find a denoised image x by solving:

min
x

1

2
∥x − y∥22︸ ︷︷ ︸
D(x ,y)

+ α
∑
j

√
∥∇xj∥22 + ν2

︸ ︷︷ ︸
≈TV(x)

+
ξ

2
∥x∥22

Solution depends on choices of α, ν and ξ:
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Choosing Parameters

Recovered solution depends strongly on problem parameters (e.g. α, ν and ξ)

Question

How to choose good problem parameters?

� Trial & error

� L-curve criterion

� Bilevel learning — data-driven approach
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Bilevel Learning

Suppose we have training data (x1, y1), . . . , (xn, yn) — ground truth and noisy

observations.

Attempt to recover xi from yi by solving inverse problem with parameters θ ∈ Rm:

x̂i (θ) := argmin
x

Φi (x , θ), e.g. Φi (x , θ) = D(Ax , yi ) + θR(x).

Try to find θ by making x̂i (θ) close to xi

min
θ

1

n

n∑
i=1

∥x̂i (θ)− xi∥2 + J (θ),

with optional (smooth) term J (θ) to encourage particular choices of θ.
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Bilevel Optimization

The bilevel learning problem is:

min
θ

f (θ) :=
1

n

n∑
i=1

∥x̂i (θ)− xi∥2 + J (θ),

s.t. x̂i (θ) := argmin
x

Φi (x , θ), ∀i = 1, . . . , n.

� If Φi are strongly convex in x and sufficiently smooth in x and θ, then x̂i (θ) is

well-defined and continuously differentiable.

� Upper-level problem (minθ f (θ)) is a smooth nonconvex optimization problem

Many use cases in data science: learning image regularizers, hyperparameter tuning,

data hypercleaning, ...
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Bilevel Learning

Difficulty?

Bilevel learning is just a smooth nonconvex problem — where is the challenge?

� Can’t evaluate lower-level minimizers x̂i (θ) exactly, so can never get exact f (θ) or

∇f (θ) [Kunisch & Pock, 2013; Sherry et al., 2020]

� But can evaluate f and ∇f to arbitrary accuracy (with significant computational

cost) [Berahas et al., 2021; Cao et al., 2022]

� Potentially large scale: both lower-level problems and upper-level problem.

– Many people looking at SGD-type methods (at both levels). Not usually used for

variational problems, so not a focus here. e.g. [Grazzi et al., 2021; Ji et al., 2021]

Key question: how to find good evaluation accuracy to get (i) guaranteed convergence,

(ii) without requiring hyperparameter tuning, (iii) at a reasonable computational cost?
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Inexact Information

First, how do we evaluate f (θ) and ∇f (θ)? [Ehrhardt & LR, 2023]

� x̂(θ) is minimiser of smooth, strongly convex problem — given ϵ, use standard

first-order methods (e.g. GD) to get xϵ = xϵ(θ) with ∥xϵ − x̂(θ)∥ ≤ ϵ

� For an objective g(x̂(θ)), Implicit Function Theorem gives

∇θg = −[∂x∂θΦ(x̂(θ), θ)]
T [∂xxΦ(x̂(θ), θ)]

−1∇xg(x̂(θ))

� Given δ, use CG to find qϵ,δ such that ∥[∂xxΦ(xϵ, θ)]qϵ,δ −∇xg(xϵ)∥ ≤ δ

� Use approximate gradient −[∂x∂θΦ(xϵ, θ)]
Tqϵ,δ

� Total gradient error is O(ϵ+ δ + ϵ2 + ϵδ) with computable constants

Note: this is equivalent to an accelerated version of backpropagation applied to the

lower-level solver iteration. [Mehmood & Ochs, 2020]
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Linesearch Framework

The underlying algorithmic approach is gradient descent with backtracking Armijo

linesearch: e.g. [Nocedal & Wright, 2006]

For j = 0, 1, 2, . . . ,

� New candidate point θ̂ = θk − αρj∇f (θk), some α > 0 and ρ ∈ (0, 1).

� Check for sufficient decrease:

f (θ̂) ≤ f (θk)− λαρj∥∇f (θk)∥2,

for some λ ∈ (0, 1).

� If sufficient decrease, θk+1 = θ̂ and stop loop; otherwise, try next value of j .

Basic proof ideas: Taylor’s theorem and λ < 1 guarantee some j eventually gives

sufficient decrease. Slow decrease in stepsize αρj guarantees stepsize never too small, so

f (θk)− f (θk+1) ≥ O(∥∇f (θk)∥2).
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Inexact Linesearch

To handle inexactness, there are two key issues to resolve:

� Given zk ≈ ∇f (θk) can we guarantee zk is a descent direction?

� If no sufficient decrease (with inexact f (θ) evaluations), should we shrink stepsize

or improve accuracy in f (or ∇f )?

To be practical, we don’t want to make accuracy in f or ∇f unnecessarily high (but

don’t want to lose convergence guarantees either).
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Inexact Gradient

Inexact Gradient Calculation

� Given ϵ and δ, calculate inexact lower-level minimiser xϵ and inexact gradient

zk ≈ ∇f (θk) (using CG with residual tolerance δ)

� Calculate computable upper bound ω for ∥zk −∇f (θk)∥
� If ω ≤ (1− η)∥zk∥, then use zk (guaranteed descent direction)

� Otherwise, decrease ϵ and δ by a constant factor and start again

Theorem

If ∥∇f (θk)∥ ≠ 0, then zk is a descent direction for all sufficiently small ϵ and δ.

i.e. Gradient calculation terminates in finite time.
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Sufficient Decrease Condition

Inexact sufficient decrease condition

� Given θ̂ = θk − αkzk , compute xϵ(θk) and xϵ(θ̂) to accuracy ϵ

� Compute approximate objective values f̃ (θk) and f̃ (θ̂)

� Inexact sufficient decrease condition is (for L-smooth and convex f ):

f̃ (θ̂) ≤ f̃ (θk)− λαk∥zk∥2 − ∥∇x f (xϵ(θ̂))∥ϵ− ∥∇x f (xϵ(θk))∥ϵ−
1

2
Lϵ2

Theorem

� If inexact sufficient decrease condition holds, then f (θ̂) ≤ f (θk)− λαk∥zk∥2.
� For any ϵ, inexact sufficient decrease condition holds for all αk ∈ [αmin(ϵ), αmax(ϵ)]

� As ϵ → 0, we have [αmin(ϵ), αmax(ϵ)] → [0, αmax] for some αmax > 0
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Inexact Backtracking

Inexact Backtracking (single iteration k)

1: for Jmax = J0, J0 + 1, J0 + 2, . . . do

2: Compute inexact gradient zk (possibly reducing ϵ and δ)

3: for j = 0, . . . , Jmax − 1 do

4: If sufficient decrease with stepsize αk = αρj , go to line 8

5: end for

6: Reduce ϵ and δ by constant factor (backtracking failed, need higher accuracy)

7: end for

8: Set θk+1 = θk − αkzk (successful linesearch)

9: Increase ϵ and δ by constant factor for next iteration

Theorem

At each iteration k, successful linesearch occurs in finite time. Hence ∥∇f (θk)∥ → 0.
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Quadratic Problem

Simple linear least-squares problem (closed form for true solution):

min
θ

f (θ) := ∥A1x̂(θ)− b1∥2 s.t. x̂(θ) = argmin
x

Φ(x , θ) := ∥A2x + A3θ − b2∥2

Do hyperparameters (initial accuracies ϵ and δ) matter?
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Quadratic Problem

Dynamic accuracy is better than fixed accuracy
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0 = 0 = 10 5

fixed 0 = 0 = 10 1

fixed 0 = 0 = 10 3

fixed 0 = 0 = 10 5 

Optimality gap vs. computational work (lower-level + CG iterations)
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Field of Experts Denoising

Field of Experts Image Denoising

min
θ

f (θ) :=
1

N

N∑
i=1

∥x̂i (θ)− x∗i ∥2,

s.t. x̂i (θ) = argmin
x

Φi (x , θ) :=
1

2
∥x − yi∥2 +

K∑
k=1

βk(θ)∥ck(θ) ∗ x∥k,θ +
µ

2
∥x∥2.

Learn K = 30 filters ck(θ), smoothed ℓ1-norms ∥ · ∥k,θ and weights βk(θ) to reconstruct

noisy 2D images (≈ 1500 hyperparameters θ).

Using N = 25 training images (x∗i , yi ) of size 96× 96 pixels.
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Field of Experts Denoising

Apply learned filters on new test image

True image Noisy (PSNR 20.0dB) Denoised (PSNR 28.7dB)

(Palladian Bridge, Bath, UK)

Bilevel Learning — Lindon Roberts (lindon.roberts@sydney.edu.au) 18



Conclusions & Future Work

Conclusions

� Bilevel learning provides a structured hyperparameter tuning method

� New linesearch method balances accuracy and computational efficiency

� Strong practical performance and robust to algorithm parameter choices

– Outperforms other existing approaches (e.g. prescribed accuracy schedule, inexact

derivative-free methods) [Pedregosa, 2016; Ehrhardt & LR, 2021]

Future Work

� Handle large training sets with SGD-type methods

� Extensions to non-strongly convex lower-level problems

Preprint: https://arxiv.org/abs/2308.10098 (substantial revisions coming soon)
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