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1. Bilevel Learning for Variational Regularization

2. Inexact Derivative-Free Optimization

— Practical algorithm for bilevel learning with convergence guarantees

3. Numerical Results:

— Image denoising
— MRI sampling patterns
— Logistic regression
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Variational Regularization

Many inverse problems can be posed in the form
min D(Ax, y) + aR(x),
X
where

e x is the quantity we wish to find

e y is some observed data: y ~ Ax (usually with noise)

e D(-,-) measures data fidelity

e R(:) is a regularizer (what types of solutions x do we prefer?)

e o > 0 is a parameter.

Without a regularizer, inverse problems are typically ill-posed.
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Image Denoising

Given a noisy image y, find a denoised image x by solving:

min *Hx—yHg +Oéz\/ IVx113 + 1% + !XHz

( )

~TV(x)

e Smooth and strongly convex optimization problem
— lIterative methods converge linearly (e.g. gradient descent, FISTA)

e Solution depends on choices of «, v and &:

Example
(a=1v=£=1073)
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Image Denoising

Given a noisy image y, find a denoised image x by solving:

1 ¢
min ~lx = yI§ +a > \/I9gl3 + 02 + S xI3
— J

D(x,y)

~TV(x)

e Smooth and strongly convex optimization problem
— lIterative methods converge linearly (e.g. gradient descent, FISTA)

e Solution depends on choices of «, v and &:
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Choosing Parameters

Recovered solution depends strongly on problem parameters (e.g. «, v and &)

How to choose good problem parameters?
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Choosing Parameters

Recovered solution depends strongly on problem parameters (e.g. «, v and &)

How to choose good problem parameters?

e Trial & error
e L-curve criterion

¢ Bilevel learning — data-driven approach
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Bilevel Learning

Suppose we have training data (x1,y1), ..., (Xn, ¥n) — ground truth and noisy
observations.

Attempt to recover x; from y; by solving inverse problem with parameters # € R™:

£i(0) := argmin ®;(x, 0), e.g. ®i(x,0) = D(Ax,yi) + OR(x).

X

Try to find 6 by making X;(0) close to x;
min 23 1%(6) - il + 7 (6)
0 n p 1 1 )

with optional (smooth) term [J () to encourage particular choices of 6.
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Bilevel Optimization

The bilevel learning problem is:

. I, .
min  f(6) := — ; 1%:(0) — xi[|* + T (0),

st. X(0) :=argmin®;(x,6), Vi=1,... n.
X
e If ®; are strongly convex in x and sufficiently smooth in x and 6, then £;(0) is

well-defined and continuously differentiable.
e Upper-level problem (ming f(6)) is a smooth nonconvex optimization problem

Convergent algorithms require exact derivatives of f(6), but not available (cannot even
compute X;(6) exactly)! [e.g. Kunisch & Pock (2013), Sherry et al. (2019)]
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Bilevel Optimization with DFO

Convergent algorithms require exact derivatives of f(6), but not available (cannot even

compute X;(6) exactly)!

In practice, calculate X;(6) and derivatives by running N iterations of strongly convex
solver (but how to choose N7).
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Bilevel Optimization with DFO

Convergent algorithms require exact derivatives of f(6), but not available (cannot even

compute X;(6) exactly)!

In practice, calculate X;(6) and derivatives by running N iterations of strongly convex
solver (but how to choose N7).
Solution:

e Use algorithms which do not require exact evaluations of f(6)

e Don’t compute gradients of f at all, since slow in practice = derivative-free
optimization (DFO)

Inexact DFO for Bilevel Learning — Lindon Roberts (1indon.roberts@anu.edu.au) 7



Model-Based DFO

Several types of DFO, focus on model-based DFO (mimics trust-region methods):
min (0)
For k =0,1,2,...

1. Sample f in a neighborhood of #; — reuse existing evaluations where possible
2. Build an interpolating function (local model) m(6) ~ f(0), accurate for 6 ~ 0
3. Calculate tentative new point by minimizing model in a neighborhood

0,5 = arg min my(0), subject to ||0 — Ok|| < Ax.
0

4. Accept/reject step and adjust Ay based on quality of new point f(@;)

0. — 0,7, if sufficient decrease, <— (maybe increase Ay)
et Ok, otherwise. <— (decrease Ay)
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Example: Model-Based DFO

1. Choose interpolation set
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Example: Model-Based DFO

2. Interpolate & minimize...
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Example: Model-Based DFO

3. Add new point to interpolation set (replace a bad point)
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Example: Model-Based DFO

4. Repeat with new interpolation set & model
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Inexact DFO for Bilevel Optimization

Key to DFO convergence theory is the following approximation result:

Theorem (Conn, Scheinberg & Vicente)

If interpolation points are close to 0, and “well-spaced”, then interpolating model is a

“fully linear” approximation of f (accuracy ~ Taylor error).

How to adapt to bilevel learning?
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Inexact DFO for Bilevel Optimization

Key to DFO convergence theory is the following approximation result:

Theorem (Conn, Scheinberg & Vicente)

If interpolation points are close to 0, and “well-spaced”, then interpolating model is a

“fully linear” approximation of f (accuracy ~ Taylor error).

How to adapt to bilevel learning?

Theorem (Ehrhardt & R., extension of Conn & Vicente (2012))

If interpolation points are close to 6, and “well-spaced”, and computed minimizers of
®,(x;,0) are sufficiently close to X;(6), then interpolating model is a “fully linear”’

approximation of f.

e Allow inexact minimization of ®; early, only ask for high accuracy when needed

e Exploit sum-of-squares structure of f to improve performance [Cartis & R. (2019)]
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Theoretical Guarantees

Algorithm converges with inexact evaluations of X;(0):

Theorem (Ehrhardt & R.)

If f is sufficiently smooth and bounded below, then:

e The inexact bilevel DFO algorithm produces a sequence 0y such that ||V (0x)|| < €
after at most k = O(e¢2) iterations. That is, liminfy_,.. ||Vf(8x)| = 0.

e All evaluations of %;(0) together require at most O(e~?|loge|) iterations (of

gradient descent, FISTA, etc.)
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Theoretical Guarantees
Algorithm converges with inexact evaluations of X;(0):
Theorem (Ehrhardt & R.)

If f is sufficiently smooth and bounded below, then:

e The inexact bilevel DFO algorithm produces a sequence 6y such that [|[Vf(0x)| < €
after at most k = O(e¢2) iterations. That is, liminfy_,.. ||Vf(8x)| = 0.

e All evaluations of %;(0) together require at most O(e~?|loge|) iterations (of

gradient descent, FISTA, etc.)

Key Benefit
Using inexact information in a structured way gives a faster learning algorithm plus

guaranteed convergence (independent of lower-level algorithm)!
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Numerical Results

Implement inexact algorithm in DFO-LS (state-of-the-art DFO software)

— Github: numerical algorithms group/dfols
Use gradient descent & FISTA to calculate X;(6) = min, ®;(x, 6)

— Using known Lipschitz and strong convexity constants (depending on 6)

— Allow arbitrary accuracy in £;(0): terminate when ||V ®|| sufficiently small
— A priori linear convergence bounds too conservative in practice

e Compare to regular DFO-LS with “fixed accuracy” lower-level solutions (constant
# iterations of GD/FISTA)

— In practice, have to guess appropriate # iterations

Measure decrease in f(€) as function of total GD/FISTA iterations
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2D Denoising Problem (learn o, v and &)

2D denoising — final learned parameters give good reconstructions
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Final reconstruction of xi,...,xg after 100 evaluations of f(60)
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2D Denoising Problem (learn «, v and &)

Dynamic accuracy is faster than “fixed accuracy” (at least 10x speedup):
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Objective value f(0) vs. computational effort
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Learning MRI Sampling Patterns

MRIs measure a subset of Fourier coefficients of an image: reconstruct using
1 2
min 210 = yI3 + R(x)

where ||v||2 := vT Sv and sampling pattern S = diag(st, ..., sq) for s; > 0.

e Use same smoothed TV regularizer R(x) (with fixed o, v and &)
e Learn sy, ..., sy, with parametrization s;(#) := 6;/(1 — ;) [Chen et al. (2014)]

e Measuring each coefficient takes time, so target sparsity: use J(6) = ||0]|1.
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Learning MRI Sampling Patterns

All variants learn 50% sparse sampling patterns:

GD 1,000 - 26 coefficients

GD 10,000 - 32 coefficients

Dynamic GD - 32 coefficients

FISTA 200 - 32 coefficients

FISTA 2,000 - 32 coefficients

Dynamic FISTA - 32 coefficients

Learned sampling patterns (white = active)
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Learning MRI Sampling Patterns

Learned sampling patterns give good reconstructions:

1.00 4
0.75 4
==+ Truth
0507 Recovered
0.25 4 ,
0.00 . — . —
T T T
0 20 40 60

Final reconstruction of xi,...,xe after 3000 evaluations of f(6)

Inexact DFO for Bilevel Learning — Lindon Roberts (1indon.roberts@anu.edu.au) 17



Learning MRI Sampling Patterns

. and dynamic accuracy is still substantially faster than fixed accuracy:

5

Upper-level objective

Inexact DFO for Bilevel

GD 1,000
GD 10,000

=== Dynamic GD ==-*

FISTA 200
FISTA 2,000
Dynamic FISTA

10° 10* 10° 106 107
Lower-level problem iterations

108

Objective value f(0) vs. computational effort
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Robustness

We also gain robustness to starting point (because of relevant convergence guarantees).

Example: learning regularizer for logistic regression (on MNIST dataset)

10°
2
Tg m=—=Dynamic FISTA
g FISTA (K = 20)
< — = FISTA (K = 200)
E = = FISTA (K = 2000)
&
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T T T T
103 10~2 101 10° 10! 102 10%
Initial £2 weight

Final parameter 6* vs. starting point 6°
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Conclusion & Future Work

Conclusions

e Bilevel learning can be used to determine good parameters for inverse problems
e Inexact DFO method gives convergence guarantees with inexact evaluations

— Practical & theoretical algorithms match: no guesswork required!

— Our results independent of lower-level solver choice

e Order-of-magnitude speedup and improved robustness on several problem categories
Future work

e Incorporate inexact gradient information (without losing convergence guarantees)

e Subsampling algorithms (a la stochastic gradient descent)

e Large-scale applications: learning 2D MRI sampling patterns, convex neural net
regularizers
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