Scalable Subspace Methods for Derivative-Free Nonlinear Least-Squares Optimization

Joint work with Coralia Cartis (Oxford)

Lindon Roberts, Australian National University (lindon.roberts@anu.edu.au)

Applied Mathematics Seminar, University of Leicester 30 September 2021

Partially supported by EPSRC (EP/L015803/1) & NAG Ltd.

- 1. Introduction to derivative-free optimization (DFO)
- 2. Subspace DFO methods: algorithm & theory
- 3. Specialization to least-squares: theory & practice
- 4. Numerical results

Meaning?

• Global minimizer: find x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$

Meaning?

- Global minimizer: find x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$
- Local minimizer: find x^* such that $f(x^*) \leq f(x)$ for all $x \in B(x^*, \epsilon)$, some $\epsilon > 0$
 - Sufficient condition: $\nabla f(\mathbf{x}^*) = 0$ and $\nabla^2 f(\mathbf{x}^*)$ positive definite

Meaning?

- Global minimizer: find x^* such that $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$
- Local minimizer: find x* such that f(x*) ≤ f(x) for all x ∈ B(x*, ϵ), some ϵ > 0
 Sufficient condition: ∇f(x*) = 0 and ∇²f(x*) positive definite
- Stationary point: find x^* such that $\nabla f(x^*) = 0$

If f is convex (e.g. $f(x) = x^2$) then all conditions above are equivalent (not today!).

Nonlinear Optimization: Motivation

Important problem across every quantative discipline!

Important problem across every quantative discipline!

Example application: least-squares parameter fitting

- Observations of some process: $(\boldsymbol{w}_1, y_1), \dots, (\boldsymbol{w}_m, y_m)$
- Model for the process, parametrized by $x: y \approx \text{model}(w, x)$
 - e.g. Linear regression model(w, x) = $w^T x$, PDE model, neural network, ...

Important problem across every quantative discipline!

Example application: least-squares parameter fitting

- Observations of some process: $(w_1, y_1), \ldots, (w_m, y_m)$
- Model for the process, parametrized by $x: y \approx \text{model}(w, x)$
 - e.g. Linear regression model($\boldsymbol{w}, \boldsymbol{x}$) = $\boldsymbol{w}^T \boldsymbol{x}$, PDE model, neural network, ...
- Fitting/learning: find parameters which fit data

$$\min_{\mathbf{x}} \sum_{i=1}^{m} \|y_i - \operatorname{model}(\mathbf{w}_i, \mathbf{x})\|^2.$$

• Final fitted model: $\pmb{w}
ightarrow \mathsf{model}(\pmb{w}, \pmb{x}^*)$

Other metrics ("losses") over y are possible: e.g. adjust for correlations, robust to outliers, ...

Basic trust-region method

Solve using trust-region methods (alternatives: BFGS+linesearch, nonlinear CG, ...)

Basic trust-region method

Solve using trust-region methods (alternatives: BFGS+linesearch, nonlinear CG, ...)

• Approximate f near x_k with a local quadratic (Taylor) model

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{s}$$

• Get step by minimizing model in a neighborhood

$$oldsymbol{s}_k = rgmin_{oldsymbol{s} \in \mathbb{R}^n} m_k(oldsymbol{s}) \qquad ext{subject to } \|oldsymbol{s}\|_2 \leq \Delta_k$$

Solve using trust-region methods (alternatives: BFGS+linesearch, nonlinear CG, ...)

• Approximate f near x_k with a local quadratic (Taylor) model

$$f(\boldsymbol{x}_k + \boldsymbol{s}) pprox m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) +
abla f(\boldsymbol{x}_k)^T \boldsymbol{s} + rac{1}{2} \boldsymbol{s}^T
abla^2 f(\boldsymbol{x}_k) \boldsymbol{s}^T$$

• Get step by minimizing model in a neighborhood

$$oldsymbol{s}_k = rgmin_{oldsymbol{s} \in \mathbb{R}^n} m_k(oldsymbol{s}) \qquad ext{subject to } \|oldsymbol{s}\|_2 \leq \Delta_k$$

• Accept/reject step and adjust Δ_k based on quality of new point $f(\boldsymbol{x}_k + \boldsymbol{s}_k)$

$$oldsymbol{x}_{k+1} = \left\{egin{array}{ll} oldsymbol{x}_k + oldsymbol{s}_k, & ext{if sufficient decrease,} & \longleftarrow & (ext{maybe increase } \Delta_k) \ oldsymbol{x}_k, & ext{otherwise.} & \longleftarrow & (ext{decrease } \Delta_k) \end{array}
ight.$$

State-of-the-art algorithm with theoretical guarantees (e.g. $\lim_{k\to\infty} \|\nabla f(\mathbf{x}_k)\|_2 = 0$). Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) [Conn, Gould & Toint, 2000]

Derivative-Free Optimization

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{s}$$

- How to calculate derivatives of f in practice?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation

Derivative-Free Optimization

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{s}$$

- How to calculate derivatives of f in practice?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation
- Difficulties when function evaluation is
 - Black-box
 - Noisy
 - Computationally expensive

Derivative-Free Optimization

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{s}$$

- How to calculate derivatives of f in practice?
 - Write code by hand
 - Finite differences
 - Algorithmic differentiation
- Difficulties when function evaluation is
 - Black-box
 - Noisy
 - Computationally expensive
- Alternative derivative-free optimization (DFO)
- Many applications: climate, experimental design, machine learning, ...
- Several approaches: model-based, Nelder-Mead, direct search, ...

Model-Based DFO — Basic Ideas

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{s}$$

• Instead, approximate

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \boldsymbol{g}_k^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{H}_k \boldsymbol{s}$$

and find g_k and H_k without using derivatives

Model-Based DFO — Basic Ideas

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{s}$$

• Instead, approximate

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \boldsymbol{g}_k^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{H}_k \boldsymbol{s}$$

and find g_k and H_k without using derivatives

• How? Interpolate f over a set of points — find g_k , H_k such that

$$m_k(\boldsymbol{y} - \boldsymbol{x}_k) = f(\boldsymbol{y}), \qquad \forall \boldsymbol{y} \in \mathcal{Y}$$

Model-Based DFO — Basic Ideas

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \nabla f(\boldsymbol{x}_k)^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \nabla^2 f(\boldsymbol{x}_k) \boldsymbol{s}$$

Instead, approximate

$$f(\boldsymbol{x}_k + \boldsymbol{s}) \approx m_k(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \boldsymbol{g}_k^T \boldsymbol{s} + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{H}_k \boldsymbol{s}$$

and find g_k and H_k without using derivatives

• How? Interpolate f over a set of points — find g_k , H_k such that

$$m_k(\boldsymbol{y} - \boldsymbol{x}_k) = f(\boldsymbol{y}), \qquad \forall \boldsymbol{y} \in \mathcal{Y}$$

- Use modified trust region method: shrink Δ_k or fix bad model?
- Ensure $\Delta_k \sim \|\nabla f(\mathbf{x}_k)\|_2$ to measure progress
- Geometry of points good \Longrightarrow interpolation model Taylor-accurate \Longrightarrow convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

1. Choose interpolation set

2. Interpolate & minimize...

3. Add new point to interpolation set (replace a bad point)

4. Repeat with new interpolation set & model

4. Repeat with new interpolation set & model

4. Repeat with new interpolation set & model

4. Repeat with new interpolation set & model

4. Repeat with new interpolation set & model

4. Repeat with new interpolation set & model

4. Repeat with new interpolation set & model

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ϵ accuracy guaranteed?

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ϵ accuracy guaranteed?

Accuracy order	Model-based DFO	Taylor models
1st: $\ \nabla f(\boldsymbol{x}_k)\ _2 \leq \epsilon$	$\mathcal{O}(n^2\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$
2nd: 1st & $\lambda_{\min}(abla^2 f(m{x}_k)) \geq -\epsilon$	$\mathcal{O}(n^9\epsilon^{-3})$	$\mathcal{O}(\epsilon^{-3})$

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016]

- Same ϵ dependency as derivative-based, but scales badly with problem dimension n
- Substantial linear algebra work for interpolation and geometry management:
 - $\mathcal{O}(n^3)$ flops per iteration for linear models, $\mathcal{O}(n^6)$ for quadratic models.

Challenge

How can DFO methods be made scalable?

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ϵ accuracy guaranteed?

Accuracy order	Model-based DFO	Taylor models
1st: $\ \nabla f(\boldsymbol{x}_k)\ _2 \leq \epsilon$	$\mathcal{O}(n^2 \epsilon^{-2}) \mathcal{O}(\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$
2nd: 1st & $\lambda_{\min}(\nabla^2 f(\boldsymbol{x}_k)) \geq -\epsilon$	$\mathcal{O}(n^9\epsilon^{-3})$	$\mathcal{O}(\epsilon^{-3})$

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016]

- Same ϵ dependency as derivative-based, but scales badly with problem dimension *n*
- Substantial linear algebra work for interpolation and geometry management:

 $- \mathcal{O}(n^3) \mathcal{O}(n)$ flops per iteration for linear models, $\mathcal{O}(n^6)$ for quadratic models.

Challenge

How can DFO methods be made scalable?

- 1. Introduction to derivative-free optimization (DFO)
- 2. Subspace DFO methods: algorithm & theory
- 3. Specialization to least-squares: theory & practice
- 4. Numerical results

Scalable DFO

Challenge

How can DFO methods be made scalable?

- Exploit known problem structure [Porcelli & Toint, 2020; Bandeira et al., 2012]
- Randomized finite differencing ('gradient sampling') [Nesterov & Spokoiny, 2017]
- Randomized direct search: sample a subset of search directions improves complexity from $\mathcal{O}(n^2 \epsilon^{-2})$ to $\mathcal{O}(n \epsilon^{-2})$ [Gratton et al., 2015; Bergou et al., 2020]

Applications for scalable DFO methods include:

- Machine learning [Salimans et al., 2017; Ughi et al., 2020]
 Image analysis [Ehrhardt & R., 2021]
- Proxy for global optimization methods

[Cartis, R. & Sheridan-Methven, 2021]

Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of \mathbb{R}^n

- Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]
- Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]
- Build on recent derivative-based analysis

[Cartis, Fowkes & Shao, 2020]

Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of \mathbb{R}^n

- Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]
- Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]
- Build on recent derivative-based analysis

Subspace DFO framework:

- Generate subspace of dimension $p \ll n$ given by $\operatorname{col}(Q_k)$ for random $Q_k \in \mathbb{R}^{n \times p}$
- Build a low-dimensional model: find $\hat{g}_k \in \mathbb{R}^p$, $\hat{H}_k \in \mathbb{R}^{p \times p}$ to get

$$f(\boldsymbol{x}_k + \boldsymbol{Q}_k \hat{\boldsymbol{s}}) pprox \hat{\boldsymbol{m}}_k(\hat{\boldsymbol{s}}) = f(\boldsymbol{x}_k) + \hat{\boldsymbol{g}}_k^T \hat{\boldsymbol{s}} + \frac{1}{2} \hat{\boldsymbol{s}}^T \hat{H}_k \hat{\boldsymbol{s}},$$

- Solve subspace trust-region subproblem: $\min_{\hat{s} \in \mathbb{R}^p} \hat{m}_k(\hat{s})$ s.t. $\|\hat{s}\|_2 \leq \Delta_k$
- Benefits: fewer interpolation points needed, cheap linear algebra (everything in \mathbb{R}^p).

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au)

[Cartis, Fowkes & Shao, 2020]

Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in 'good' subspaces (where there is potential to decrease *f* sufficiently).

The subspace at iteration k is well-aligned if

 $\|Q_k^T \nabla f(\boldsymbol{x}_k)\|_2 \ge \alpha \|\nabla f(\boldsymbol{x}_k)\|_2, \quad \text{for some } \alpha > 0.$
Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in 'good' subspaces (where there is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

 $\|Q_k^T \nabla f(\boldsymbol{x}_k)\|_2 \ge \alpha \|\nabla f(\boldsymbol{x}_k)\|_2, \quad \text{for some } \alpha > 0.$

Key Assumption

The subspace Q_k is well-aligned with probability $1 - \delta$ (whenever Q_k is resampled, independent of history), and $\|Q_k\|_2 \leq Q_{\max}$.

Why? If $\|\nabla f(\mathbf{x}_k)\|_2 \ge \epsilon$, Q_k well-aligned and \hat{m}_k fully linear, then $\|\hat{\mathbf{g}}_k\|_2 \ge \Omega(\epsilon)$

- If there is still work to do, then the algorithm (probably) knows it

RSDFO (Random Subspace DFO): [model-based DFO, RSDFO-specific]

- 1. If FLAG, use previous $Q_k = Q_{k-1}$ and construct fully linear subspace model \hat{m}_k .
- 2. Otherwise, generate random Q_k and construct subspace model \hat{m}_k .
- 3. If $\|\hat{g}_k\|_2$ small, ensure model fully linear and $\Delta_k \sim \|\nabla f(\mathbf{x}_k)\|_2$. [criticality]
- 4. Minimize model to get $\mathbf{s}_k = \mathbf{Q}_k \hat{\mathbf{s}}_k$, evaluate $f(\mathbf{x}_k + \mathbf{s}_k)$.
- 5. Check sufficient decrease, then accept/reject step and update Δ_k :
 - If decrease: $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$ and $\Delta_{k+1} = \gamma_{inc}\Delta_k$, add \mathbf{x}_{k+1} to model. [successful]
 - If no decrease and model not fully linear: $x_{k+1} = x_k$ and $\Delta_{k+1} = \Delta_k$, make model fully linear. Set FLAG=TRUE. [model-improving]
 - If no decrease and model fully linear: $\mathbf{x}_{k+1} = \mathbf{x}_k$ and $\Delta_{k+1} = \gamma_{dec} \Delta_k$. [unsuccessful]

Theorem (Cartis & R., 2021)

If f is sufficiently smooth and bounded below, $\gamma_{dec} > \gamma_{inc}^{-1/2}$ and ϵ sufficiently small, then for some c, C > 0,

$$\mathbb{P}\left[\mathcal{K}_\epsilon \leq rac{\mathcal{C}}{lpha^2(1-\delta)\epsilon^2}
ight] \geq 1-e^{-c\epsilon^{-2}},$$

where K_{ϵ} is the first iteration with $\|\nabla f(\mathbf{x}_k)\|_2 \leq \epsilon$.

- Matches usual $\mathcal{O}(\epsilon^{-2})$ worst-case complexity bound with high probability
- Implies $\mathbb{E}\left[K_{\epsilon}\right] = \mathcal{O}(\epsilon^{-2})$ and almost-sure convergence
- Constant C depends on p (from fully linear error bounds), c depends on p and δ

Convergence Proof — Sketch

Proof sketch: while $\|\nabla f(\mathbf{x}_k)\|_2 > \epsilon$, bound number of iterations across 6 cases. Good subspace:

- 1. Δ_k large + successful: get $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \Omega(\epsilon^2)$, so happens $\mathcal{O}(\epsilon^{-2})$ times.
- 2. Δ_k large + unsuccessful: bounded by case #1 from Δ_k management.
- 3. Δ_k small + unsuccessful + good model: doesn't happen (Taylor accuracy)
- 4. Δ_k small + successful: bounded by cases #3 and #5 from Δ_k management
- 5. Δ_k small + bad model: keep Q_k and Δ_k , build good model (next time #3 or #4)

(extra difficulties: different Δ_k large/small thresholds, 4 \leftrightarrow 5, criticality steps, ...)

Bad subspace:

6. Happens with small probability δ . Need $\gamma_{dec} > \gamma_{inc}^{-1/2}$ to ensure Δ_k not decreased too quickly in these iterations.

Generating Q_k

For RSDFO to work, need to be able to generate Q_k such that

 $\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$ with probability $\ge 1 - \delta$.

If Q_k is a random orthonormal set (e.g. block coordinates), need $p \sim \alpha n$.

Generating Q_k

For RSDFO to work, need to be able to generate Q_k such that

 $\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$ with probability $\ge 1 - \delta$.

If Q_k is a random orthonormal set (e.g. block coordinates), need $p \sim \alpha n$.

Instead, make Q_k a Johnson-Lindenstrauss embedding, such as

- Q_k has i.i.d. Gaussian entries $\mathcal{N}(0, 1/p)$
- Q_k has s random nonzero entries per row, value $\pm 1/\sqrt{s}$ with probability 1/2

Then, only need $p \sim (1 - \alpha)^{-2} |\log \delta|$, independent of *n*.

Generating Q_k

For RSDFO to work, need to be able to generate Q_k such that

 $\|Q_k^T \nabla f(\mathbf{x}_k)\|_2 \ge \alpha \|\nabla f(\mathbf{x}_k)\|_2$ with probability $\ge 1 - \delta$.

If Q_k is a random orthonormal set (e.g. block coordinates), need $p \sim \alpha n$.

Instead, make Q_k a Johnson-Lindenstrauss embedding, such as

- Q_k has i.i.d. Gaussian entries $\mathcal{N}(0, 1/p)$
- Q_k has s random nonzero entries per row, value $\pm 1/\sqrt{s}$ with probability 1/2

Then, only need $p \sim (1 - \alpha)^{-2} |\log \delta|$, independent of *n*.

Accuracy order	Model-based DFO	RSDFO	Taylor models
1st	$\mathcal{O}(n^2 \epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$	$\mathcal{O}(\epsilon^{-2})$
2nd	$\mathcal{O}(n^9\epsilon^{-3})$??	$\mathcal{O}(\epsilon^{-3})$

- 1. Introduction to derivative-free optimization (DFO)
- 2. Subspace DFO methods: algorithm & theory
- 3. Specialization to least-squares: theory & practice
- 4. Numerical results

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|_2^2,\qquad \boldsymbol{r}(\boldsymbol{x})\in\mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|_2^2,\qquad \boldsymbol{r}(\boldsymbol{x})\in\mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

• Linearize r at x_k using Jacobian

 $r(x_k+s) \approx m_k(s) = r(x_k) + J(x_k)s$

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|_2^2,\qquad \boldsymbol{r}(\boldsymbol{x})\in\mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k) + J(x_k)s$$

• Jacobian not available: use

$$\boldsymbol{m}_k(\boldsymbol{s}) = \boldsymbol{r}(\boldsymbol{x}_k) + \boldsymbol{J}_k \boldsymbol{s}$$

• Find J_k using linear interpolation

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}f(\boldsymbol{x})=\frac{1}{2}\|\boldsymbol{r}(\boldsymbol{x})\|_2^2,\qquad \boldsymbol{r}(\boldsymbol{x})\in\mathbb{R}^m$$

Classical Gauss-Newton

Derivative-Free Gauss-Newton

• Linearize r at x_k using Jacobian

$$r(x_k+s) \approx m_k(s) = r(x_k) + J(x_k)s$$

• Jacobian not available: use

$$\boldsymbol{m}_k(\boldsymbol{s}) = \boldsymbol{r}(\boldsymbol{x}_k) + \boldsymbol{J}_k \boldsymbol{s}$$

• Find J_k using linear interpolation

In both cases, get a local quadratic model

$$f(\boldsymbol{x}_k + \boldsymbol{s}) pprox m_k(\boldsymbol{s}) = rac{1}{2} \|\boldsymbol{m}_k(\boldsymbol{s})\|_2^2$$

Implemented in state-of-the-art solver DFO-LS (+ NAG Library) [Cartis et al., 2019]

DFO for Least-Squares

Standard method has first-order complexity $\mathcal{O}(n^6 \epsilon^{-2})$: dependency on *n* between first & second order methods. [Cartis & R., 2019]

RSDFO with Gauss-Newton models gets dimension-independent $\mathcal{O}(\epsilon^{-2})$ bound.

DFO for Least-Squares

Standard method has first-order complexity $\mathcal{O}(n^6 \epsilon^{-2})$: dependency on *n* between first & second order methods. [Cartis & R., 2019]

RSDFO with Gauss-Newton models gets dimension-independent $\mathcal{O}(\epsilon^{-2})$ bound.

Practical considerations:

- Linear algebra cost of standard method is $O(mn^2 + n^3)$ flops per iteration from linear interpolation, RSDFO only needs $O(mp^2 + np^2)$
- Standard method reuses (possibly expensive) evaluations of r(x) across iterations, RSDFO has to resample all points from new subspace

Practical Challenge

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations of r(x)?

Derivative-Free Block Gauss-Newton

Practical Challenge

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations of r(x)?

The key idea here is to use the locations of interpolation points to define the subspace.

If we have p + 1 interpolation points $\{x_k, y_1, \dots, y_p\}$, then make Q_k an orthonormal basis for $\{y_1 - x_k, \dots, y_p - x_k\}$ (from QR factorization).

- Same low linear algebra cost, but $s_k \in col(Q_k)$ only explore initial subspace!
- Need a mechanism to explore the whole space:
 - i.e. need to change Q_k on each iteration
 - Replace some interpolation points with random directions (orthogonal to Q_k)
 - No free lunch: more new subspace directions requires more new evaluations

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

- 1. Build low-dimensional model and calculate trust-region step $m{s}_k = Q_k \hat{m{s}}_k$
- 2. Evaluate $f(\mathbf{x}_k + \mathbf{s}_k)$, accept/reject step, and update Δ_k (as before)
- 3. Add $\boldsymbol{x}_k + \boldsymbol{s}_k$ to interpolation set
- 4. Remove $p_{drop} \ge 2$ points from the interpolation set
- 5. Add random orthogonal directions $\boldsymbol{x}_k + \Delta_k \boldsymbol{d}$ until p+1 interpolation points

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

- 1. Build low-dimensional model and calculate trust-region step $m{s}_k = Q_k \hat{m{s}}_k$
- 2. Evaluate $f(\mathbf{x}_k + \mathbf{s}_k)$, accept/reject step, and update Δ_k (as before)
- 3. Add $\boldsymbol{x}_k + \boldsymbol{s}_k$ to interpolation set
- 4. Remove $p_{drop} \ge 2$ points from the interpolation set
- 5. Add random orthogonal directions $\boldsymbol{x}_k + \Delta_k \boldsymbol{d}$ until p + 1 interpolation points

Comments:

- $p_{drop} \ge 2$ ensures new direction(s) **d** added next iteration $\implies Q_{k+1} \ne Q_k$. - Practical choice: $p_{drop} = 2$ on success, p/10 otherwise (geometry-aware removal)
- Linear algebra cost $\mathcal{O}(mp^2 + np^2)$ vs. standard method $\mathcal{O}(mn^2 + n^3)$
- Package on Github: numerical algorithms group/dfbgn

- 1. Introduction to derivative-free optimization (DFO)
- 2. Subspace DFO methods: algorithm & theory
- 3. Specialization to least-squares: theory & practice
- 4. Numerical results

Numerical Results — low accuracy

DFBGN vs. DFO-LS (low accuracy $au=10^{-1})$

[% problems solved vs. # evals]

Medium-scale problems, $n \approx 100$

DFBGN is more suitable for low accuracy solutions, performance improves with larger p

Numerical Results — high dimensional problems

Compare DFBGN method to DFO-LS (low accuracy $\tau = 10^{-1}$)

Large problems $n \approx 1000$, 12hr timeout

DFBGN outperforms DFO-LS for low accuracy solutions on large-scale problems...

Proportion of problems where solver times out (before usual termination):

Solver	Timeout
DFO-LS	93%
DFO-LS (init $n/100$)	98%
DFBGN ($p = n/100$)	35%
DFBGN ($p = n/10$)	74%
DFBGN ($p = n/2$)	82%
DFBGN $(p = n)$	66%

... because it doesn't time out

Numerical Results — low budget

Other advantage: DFBGN progresses after $p \ll n$ evaluations (important when n large)

ARWHDNE, *n* = 2000

CHANDHEQ, *n* = 2000

(normalized objective reduction vs. # evaluations, 12hr timeout)

Conclusions & Future Work

Conclusions

- Scalability of model-based DFO is currently limited (in theory & practice)
- New algorithms reduce linear algebra cost and iteration complexity
- Novel complexity analysis with dimension-independent bounds
- DFBGN outperforms state-of-the-art code on large-scale problems

Future Work

- Second-order complexity analysis
- Efficient implementation of subspace quadratic models
- Similar strategies for direct search DFO

[arXiv:2102.12016, Github: numerical algorithms group/dfbgn]

A. S. BANDEIRA, K. SCHEINBERG, AND L. N. VICENTE, *Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization*, Mathematical Programming, 134 (2012), pp. 223–257.

E. H. BERGOU, E. GORBUNOV, AND P. RICHTÁRIK, *Stochastic three points method for unconstrained smooth minimization*, SIAM Journal on Optimization, (2020).

C. CARTIS, J. FIALA, B. MARTEAU, AND L. ROBERTS, *Improving the flexibility and robustness of model-based derivative-free optimization solvers*, ACM Transactions on Mathematical Software, 45 (2019), pp. 32:1–32:41.

C. CARTIS, J. FOWKES, AND Z. SHAO, *A randomised subspace Gauss-Newton method for nonlinear least-squares*, in Workshop on "Beyond first-order methods in ML systems" at the 37th International Conference on Machine Learning, Vienna, Austria, 2020.

C. CARTIS, N. I. M. GOULD, AND P. L. TOINT, On the complexity of steepest descent, Newton's and regularized Newton's methods for nonconvex unconstrained optimization problems, SIAM Journal on Optimization, 20 (2010), pp. 2833–2852.

References ii

C. CARTIS AND L. ROBERTS, *A derivative-free Gauss-Newton method*, Mathematical Programming Computation, 11 (2019), pp. 631–674.

-------, Scalable subspace methods for derivative-free nonlinear least-squares optimization, arXiv preprint arXiv:2102.12016, (2021).

C. CARTIS, L. ROBERTS, AND O. SHERIDAN-METHVEN, *Escaping local minima with local derivative-free methods: a numerical investigation*, Optimization, to appear (2021).

A. R. CONN, N. I. M. GOULD, AND P. L. TOINT, *Trust-Region Methods*, vol. 1 of MPS-SIAM Series on Optimization, MPS/SIAM, Philadelphia, 2000.

A. R. CONN, K. SCHEINBERG, AND L. N. VICENTE, *Introduction to Derivative-Free Optimization*, vol. 8 of MPS-SIAM Series on Optimization, MPS/SIAM, Philadelphia, 2009.

M. J. EHRHARDT AND L. ROBERTS, *Inexact derivative-free optimization for bilevel learning*, Journal of Mathematical Imaging and Vision, 63 (2020), pp. 580–600.

R. GARMANJANI, D. JÚDICE, AND L. N. VICENTE, *Trust-region methods without using derivatives: Worst case complexity and the nonsmooth case*, SIAM Journal on Optimization, 26 (2016), pp. 1987–2011.

References iii

S. GRATTON, C. W. ROYER, L. N. VICENTE, AND Z. ZHANG, *Direct search based on probabilistic descent*, SIAM Journal on Optimization, 25 (2015), pp. 1515–1541.

J. C. GROSS AND G. T. PARKS, Optimization by moving ridge functions: Derivative-free optimization for computationally intensive functions, arXiv preprint arXiv:2007.04893, (2020).

Y. NESTEROV AND V. SPOKOINY, *Random gradient-free minimization of convex functions*, Foundations of Computational Mathematics, 17 (2017), pp. 527–566.

A. NEUMAIER, H. FENDL, H. SCHILLY, AND T. LEITNER, VXQR: Derivative-free unconstrained optimization based on QR factorizations, Soft Computing, 15 (2011), pp. 2287–2298.

A. PATRASCU AND I. NECOARA, Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization, Journal of Global Optimization, 61 (2015), pp. 19–46.

M. PORCELLI AND P. L. TOINT, Global and local information in structured derivative free optimization with BFO, arXiv preprint arXiv:2001.04801, (2020).

M. J. D. POWELL, *On trust region methods for unconstrained minimization without derivatives*, Mathematical Programming, 97 (2003), pp. 605–623.

T. SALIMANS, J. HO, X. CHEN, S. SIDOR, AND I. SUTSKEVER, *Evolution strategies as a scalable alternative to reinforcement learning*, arXiv preprint arXiv:1703.03864, (2017).

G. UGHI, V. ABROL, AND J. TANNER, An empirical study of derivative-free-optimization algorithms for targeted black-box attacks in deep neural networks, arXiv preprint arXiv:2012.01901, (2020).

S. J. WRIGHT, Coordinate descent algorithms, Mathematical Programming, 151 (2015), pp. 3–34.

General Objective Problems

General objective case is much harder — rely on quadratic interpolation models.

2 points per subspace direction

After step, how to rotate subspace?

Subspace dimensions decoupled from interpolation directions $y_t - x_k$

Choice of p_{drop}

How to choose p_{drop} ?

- Large changes to Q_k (e.g. $p_{drop} = p/10)$ explore whole space quickly
- Small changes to Q_k (e.g. $p_{drop} = 2$) use few evaluations
- Compromise? ($p_{drop} = 2$ on successful iterations, p/10 on unsuccessful iterations)

% problems solved vs. # objective evaluations (normalized)

Choice of p_{drop}

Choise of p_{drop} prevents Δ_k too small too soon (needed for convergence)

(CUTEst problem LUKSAN13 with n = 100)