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Derivative-Free Optimization

min
x∈Rn

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

� Difficulties when function evaluation is black-box, noisy and/or expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ...

– Plus applications in finance, climate, engineering, ...
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Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Geometry of points good =⇒ interpolation model Taylor-accurate =⇒ convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Model-Based DFO — Basic Ideas

Implement in trust-region method:

1. Build interpolation model mk(s)

2. Minimize model inside trust region

sk = arg min
s∈Rn

mk(s) s.t. ‖s‖2 ≤ ∆k .

3. Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)

4. Update interpolation set: add xk + sk (and maybe other points) to interpolation set

Difficulty with DFO: no sufficient decrease because ∆k too large or bad model? When

to terminate?
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Model-Based DFO — Theory

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ε accuracy guaranteed?

Accuracy order Model-based DFO Taylor models

1st: ‖∇f (xk)‖2 ≤ ε O(n2ε−2) O(ε−2)

2nd: 1st & λmin(∇2f (xk)) ≥ −ε O(n9ε−3) O(ε−3)

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016]

� Same ε dependency as derivative-based, but scales badly with problem dimension n
� Substantial linear algebra work for interpolation and geometry management:

– O(n3) flops per iteration for linear models, O(n6) for quadratic models.

Challenge

How can DFO methods be made scalable?
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� Same ε dependency as derivative-based, but scales badly with problem dimension n
� Substantial linear algebra work for interpolation and geometry management:

– O(n3) O(n) flops per iteration for linear models, O(n6) for quadratic models.

Challenge

How can DFO methods be made scalable?

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 5



Outline

1. Introduction to derivative-free optimization (DFO)

2. Subspace DFO methods: algorithm & theory

3. Specialization to least-squares: numerical results

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 6



Scalable DFO

Challenge

How can DFO methods be made scalable?

� Exploit known problem structure [Porcelli & Toint, 2020; Bandeira et al., 2012]

� Randomized finite differencing (‘gradient sampling’) [Nesterov & Spokoiny, 2017]

� Randomized direct search: sample a subset of search directions — improves

complexity from O(n2ε−2) to O(nε−2) [Gratton et al., 2015; Bergou et al., 2020]

Applications for scalable DFO methods include:

� Machine learning [Salimans et al., 2017; Ughi et al., 2020]

� Image analysis [Ehrhardt & R., 2021]

� Proxy for global optimization methods [Cartis, R. & Sheridan-Methven, 2021]
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Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of Rn

� Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]

� Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]

� Build on recent derivative-based analysis [Cartis, Fowkes & Shao, 2020]

Subspace DFO framework:

� Generate subspace of dimension p � n given by col(Qk) for random Qk ∈ Rn×p

� Build a low-dimensional model: find ĝk ∈ Rp, Ĥk ∈ Rp×p to get

f (xk + Qk ŝ) ≈ m̂k(ŝ) = f (xk) + ĝT
k ŝ +

1

2
ŝT Ĥk ŝ,

� Solve subspace trust-region subproblem: minŝ∈Rp m̂k(ŝ) s.t. ‖ŝ‖2 ≤ ∆k

� Benefits: fewer interpolation points needed, cheap linear algebra (everything in Rp).
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Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

‖QT
k ∇f (xk)‖2 ≥ α‖∇f (xk)‖2, for some α > 0.

Key Assumption

The subspace Qk is well-aligned with probability 1− δ (whenever Qk is resampled,

independent of history), and ‖Qk‖2 ≤ Qmax.

Why? If ‖∇f (xk)‖2 ≥ ε, Qk well-aligned and m̂k fully linear, then ‖ĝk‖2 ≥ Ω(ε)

– If there is still work to do, then the algorithm (probably) knows it
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Subspace DFO Algorithm

RSDFO (Random Subspace DFO): [model-based DFO, RSDFO-specific]

1. If FLAG, use previous Qk = Qk−1 and construct fully linear subspace model m̂k .

2. Otherwise, generate random Qk and construct subspace model m̂k .

3. If ‖ĝk‖2 small, ensure model fully linear and ∆k ∼ ‖∇f (xk)‖2. [criticality]

4. Minimize model to get sk = Qk ŝk , evaluate f (xk + sk).

5. Check sufficient decrease, then accept/reject step and update ∆k :

� If decrease: xk+1 = xk + sk and ∆k+1 = γinc∆k , add xk+1 to model. [successful]

� If no decrease and model not fully linear: xk+1 = xk and ∆k+1 = ∆k , make model

fully linear. Set FLAG=TRUE. [model-improving]

� If no decrease and model fully linear: xk+1 = xk and ∆k+1 = γdec∆k . [unsuccessful]
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Subspace DFO — Convergence

Theorem (Cartis & R., 2021)

If f is sufficiently smooth and bounded below, γdec > γ
−1/2
inc and ε sufficiently small,

then for some c ,C > 0,

P
[
Kε ≤

C

α2(1− δ)ε2

]
≥ 1− e−cε

−2
,

where Kε is the first iteration with ‖∇f (xk)‖2 ≤ ε.

� Matches usual O(ε−2) worst-case complexity bound with high probability

� Implies E [Kε] = O(ε−2) and almost-sure convergence

� Constant C depends on p (from fully linear error bounds), c depends on p and δ
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Convergence Proof — Sketch

Proof sketch: while ‖∇f (xk)‖2 > ε, bound number of iterations across 6 cases.

Good subspace:

1. ∆k large + successful: get f (xk)− f (xk+1) ≥ Ω(ε2), so happens O(ε−2) times.

2. ∆k large + unsuccessful: bounded by case #1 from ∆k management.

3. ∆k small + unsuccessful + good model: doesn’t happen (Taylor accuracy)

4. ∆k small + successful: bounded by cases #3 and #5 from ∆k management

5. ∆k small + bad model: keep Qk and ∆k , build good model (next time #3 or #4)

(extra difficulties: different ∆k large/small thresholds, 4 ↔ 5, criticality steps, ...)

Bad subspace:

6. Happens with small probability δ. Need γdec > γ
−1/2
inc to ensure ∆k not decreased

too quickly in these iterations.
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Generating Qk

For RSDFO to work, need to be able to generate Qk such that

‖QT
k ∇f (xk)‖2 ≥ α‖∇f (xk)‖2 with probability ≥ 1− δ.

If Qk is a random orthonormal set (e.g. block coordinates), need p ∼ αn.

Instead, make Qk a Johnson-Lindenstrauss embedding, such as

� Qk has i.i.d. Gaussian entries N (0, 1/p)

� Qk has s random nonzero entries per row, value ±1/
√
s with probability 1/2

Then, only need p ∼ (1− α)−2| log δ|, independent of n.

Accuracy order Model-based DFO RSDFO Taylor models

1st O(n2ε−2) O(ε−2) O(ε−2)

2nd O(n9ε−3) ?? O(ε−3)
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DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk +s) ≈ mk(s) = r(xk)+J(xk)s

� Jacobian not available: use

mk(s) = r(xk) + Jks

� Find Jk using linear interpolation

In both cases, get a local quadratic model

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Implemented in state-of-the-art solver DFO-LS [Cartis et al., 2019]
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DFO for Least-Squares

Standard method has first-order complexity O(n6ε−2): dependency on n between first &

second order methods. [Cartis & R., 2019]

RSDFO with Gauss-Newton models gets dimension-independent O(ε−2) bound.

Practical considerations:

� Linear algebra cost of standard method is O(mn2 + n3) flops per iteration from

linear interpolation, RSDFO only needs O(mp2 + np2)

� Standard method reuses (possibly expensive) evaluations of r(x) across iterations,

RSDFO has to resample all points from new subspace

Key idea (DFBGN): use the locations of interpolation points to define the subspace

=⇒ cheap linear algebra and fewer evaluations! If we have interpolation points

{xk , y1, . . . , yp}, then make Qk an orthonormal basis for {y1 − xk , . . . , yp − xk}.
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Numerical Results — low accuracy

DFBGN vs. DFO-LS (low accuracy τ = 10−1) [% problems solved vs. # evals]
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Medium-scale problems, n ≈ 100
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Large problems n ≈ 1000, 12hr timeout

DFBGN performance improves with larger p. Outperforms DFO-LS on large problems...
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Timeout Rate

Proportion of large problems (n ≈ 1000) where solver times out (before usual

termination):

Solver Timeout

DFO-LS 93%

DFO-LS (init n/100) 98%

DFBGN (p = n/100) 35%

DFBGN (p = n/10) 74%

DFBGN (p = n/2) 82%

DFBGN (p = n) 66%

... because it doesn’t time out
Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 18



Numerical Results — low budget

Other advantage: DFBGN progresses after p � n evaluations (important when n large)
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Conclusions & Future Work

Conclusions

� Scalability of model-based DFO is currently limited (in theory & practice)

� New algorithms reduce linear algebra cost and iteration complexity

� Novel complexity analysis with dimension-independent bounds

� DFBGN outperforms state-of-the-art code on large-scale problems

Future Work

� Second-order complexity analysis

� Efficient implementation of subspace quadratic models

� Similar strategies for direct search DFO

[arXiv:2102.12016, Github: numerical algorithms group/dfbgn]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 20



References i

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Computation of sparse low degree interpolating

polynomials and their application to derivative-free optimization, Mathematical Programming, 134 (2012),

pp. 223–257.
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Derivative-Free Block Gauss-Newton

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

1. Build low-dimensional model and calculate trust-region step sk = Qk ŝk

2. Evaluate f (xk + sk), accept/reject step, and update ∆k (as before)

3. Add xk + sk to interpolation set

4. Remove pdrop ≥ 2 points from the interpolation set

5. Add random orthogonal directions xk + ∆kd until p + 1 interpolation points

Comments:

� pdrop ≥ 2 ensures new direction(s) d added next iteration =⇒ Qk+1 6= Qk .

– Practical choice: pdrop = 2 on success, p/10 otherwise (geometry-aware removal)

� Linear algebra cost O(mp2 + np2) vs. standard method O(mn2 + n3)

� Package on Github: numerical algorithms group/dfbgn
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General Objective Problems

General objective case is much harder — rely on quadratic interpolation models.

xk

2 points per subspace direction

xk

xk+1

After step, how to rotate subspace?

Subspace dimensions decoupled from interpolation directions y t − xk
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