
Large-Scale Derivative-Free Optimization using Subspace

Methods

Joint work with Coralia Cartis (Oxford)

Lindon Roberts, Australian National University (lindon.roberts@anu.edu.au)

18th EUROPT Workshop on Advances in Continuous Optimization

9 July 2021

Outline

1. Introduction to derivative-free optimization (DFO)

2. Subspace DFO methods: algorithm & theory

3. Specialization to least-squares: numerical results

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 1

Derivative-Free Optimization

min
x∈Rn

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

� Difficulties when function evaluation is black-box, noisy and/or expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ...

– Plus applications in finance, climate, engineering, ...

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 2

Derivative-Free Optimization

min
x∈Rn

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

� Difficulties when function evaluation is black-box, noisy and/or expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ...

– Plus applications in finance, climate, engineering, ...

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 2

Derivative-Free Optimization

min
x∈Rn

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

� Difficulties when function evaluation is black-box, noisy and/or expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ...

– Plus applications in finance, climate, engineering, ...

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 2

Derivative-Free Optimization

min
x∈Rn

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

� Difficulties when function evaluation is black-box, noisy and/or expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ...

– Plus applications in finance, climate, engineering, ...

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 2

Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Geometry of points good =⇒ interpolation model Taylor-accurate =⇒ convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 3

Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Geometry of points good =⇒ interpolation model Taylor-accurate =⇒ convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 3

Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
sT∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T s +

1

2
sTHks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Geometry of points good =⇒ interpolation model Taylor-accurate =⇒ convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 3

Model-Based DFO — Basic Ideas

Implement in trust-region method:

1. Build interpolation model mk(s)

2. Minimize model inside trust region

sk = arg min
s∈Rn

mk(s) s.t. ‖s‖2 ≤ ∆k .

3. Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)

4. Update interpolation set: add xk + sk (and maybe other points) to interpolation set

Difficulty with DFO: no sufficient decrease because ∆k too large or bad model? When

to terminate?

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 4

Model-Based DFO — Theory

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ε accuracy guaranteed?

Accuracy order Model-based DFO Taylor models

1st: ‖∇f (xk)‖2 ≤ ε O(n2ε−2) O(ε−2)

2nd: 1st & λmin(∇2f (xk)) ≥ −ε O(n9ε−3) O(ε−3)

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016]

� Same ε dependency as derivative-based, but scales badly with problem dimension n
� Substantial linear algebra work for interpolation and geometry management:

– O(n3) flops per iteration for linear models, O(n6) for quadratic models.

Challenge

How can DFO methods be made scalable?

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 5

Model-Based DFO — Theory

Model-based methods have similar convergence results to derivative-based methods.

Worst-case complexity: how many iterations before ε accuracy guaranteed?

Accuracy order Model-based DFO Taylor models

1st: ‖∇f (xk)‖2 ≤ ε O(n2ε−2) O(ε−2) O(ε−2)

2nd: 1st & λmin(∇2f (xk)) ≥ −ε O(n9ε−3) O(ε−3)

[Cartis, Gould & Toint, 2010; Garmanjani, Júdice & Vicente, 2016]

� Same ε dependency as derivative-based, but scales badly with problem dimension n
� Substantial linear algebra work for interpolation and geometry management:

– O(n3) O(n) flops per iteration for linear models, O(n6) for quadratic models.

Challenge

How can DFO methods be made scalable?

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 5

Outline

1. Introduction to derivative-free optimization (DFO)

2. Subspace DFO methods: algorithm & theory

3. Specialization to least-squares: numerical results

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 6

Scalable DFO

Challenge

How can DFO methods be made scalable?

� Exploit known problem structure [Porcelli & Toint, 2020; Bandeira et al., 2012]

� Randomized finite differencing (‘gradient sampling’) [Nesterov & Spokoiny, 2017]

� Randomized direct search: sample a subset of search directions — improves

complexity from O(n2ε−2) to O(nε−2) [Gratton et al., 2015; Bergou et al., 2020]

Applications for scalable DFO methods include:

� Machine learning [Salimans et al., 2017; Ughi et al., 2020]

� Image analysis [Ehrhardt & R., 2021]

� Proxy for global optimization methods [Cartis, R. & Sheridan-Methven, 2021]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 7

Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of Rn

� Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]

� Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]

� Build on recent derivative-based analysis [Cartis, Fowkes & Shao, 2020]

Subspace DFO framework:

� Generate subspace of dimension p � n given by col(Qk) for random Qk ∈ Rn×p

� Build a low-dimensional model: find ĝk ∈ Rp, Ĥk ∈ Rp×p to get

f (xk + Qk ŝ) ≈ m̂k(ŝ) = f (xk) + ĝT
k ŝ +

1

2
ŝT Ĥk ŝ,

� Solve subspace trust-region subproblem: minŝ∈Rp m̂k(ŝ) s.t. ‖ŝ‖2 ≤ ∆k

� Benefits: fewer interpolation points needed, cheap linear algebra (everything in Rp).

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 8

Subspace DFO

We use a subspace method: only search in low-dimensional subspaces of Rn

� Related to coordinate descent methods [Wright, 2015; Patrascu & Necoara, 2015]

� Some implementations exist, but no theory [Gross & Parks, 2020; Neumaier et al., 2011]

� Build on recent derivative-based analysis [Cartis, Fowkes & Shao, 2020]

Subspace DFO framework:

� Generate subspace of dimension p � n given by col(Qk) for random Qk ∈ Rn×p

� Build a low-dimensional model: find ĝk ∈ Rp, Ĥk ∈ Rp×p to get

f (xk + Qk ŝ) ≈ m̂k(ŝ) = f (xk) + ĝT
k ŝ +

1

2
ŝT Ĥk ŝ,

� Solve subspace trust-region subproblem: minŝ∈Rp m̂k(ŝ) s.t. ‖ŝ‖2 ≤ ∆k

� Benefits: fewer interpolation points needed, cheap linear algebra (everything in Rp).

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 8

Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

‖QT
k ∇f (xk)‖2 ≥ α‖∇f (xk)‖2, for some α > 0.

Key Assumption

The subspace Qk is well-aligned with probability 1− δ (whenever Qk is resampled,

independent of history), and ‖Qk‖2 ≤ Qmax.

Why? If ‖∇f (xk)‖2 ≥ ε, Qk well-aligned and m̂k fully linear, then ‖ĝk‖2 ≥ Ω(ε)

– If there is still work to do, then the algorithm (probably) knows it

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 9

Subspace DFO — Subspace Quality

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently).

The subspace at iteration k is well-aligned if

‖QT
k ∇f (xk)‖2 ≥ α‖∇f (xk)‖2, for some α > 0.

Key Assumption

The subspace Qk is well-aligned with probability 1− δ (whenever Qk is resampled,

independent of history), and ‖Qk‖2 ≤ Qmax.

Why? If ‖∇f (xk)‖2 ≥ ε, Qk well-aligned and m̂k fully linear, then ‖ĝk‖2 ≥ Ω(ε)

– If there is still work to do, then the algorithm (probably) knows it

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 9

Subspace DFO Algorithm

RSDFO (Random Subspace DFO): [model-based DFO, RSDFO-specific]

1. If FLAG, use previous Qk = Qk−1 and construct fully linear subspace model m̂k .

2. Otherwise, generate random Qk and construct subspace model m̂k .

3. If ‖ĝk‖2 small, ensure model fully linear and ∆k ∼ ‖∇f (xk)‖2. [criticality]

4. Minimize model to get sk = Qk ŝk , evaluate f (xk + sk).

5. Check sufficient decrease, then accept/reject step and update ∆k :

� If decrease: xk+1 = xk + sk and ∆k+1 = γinc∆k , add xk+1 to model. [successful]

� If no decrease and model not fully linear: xk+1 = xk and ∆k+1 = ∆k , make model

fully linear. Set FLAG=TRUE. [model-improving]

� If no decrease and model fully linear: xk+1 = xk and ∆k+1 = γdec∆k . [unsuccessful]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 10

Subspace DFO — Convergence

Theorem (Cartis & R., 2021)

If f is sufficiently smooth and bounded below, γdec > γ
−1/2
inc and ε sufficiently small,

then for some c ,C > 0,

P
[
Kε ≤

C

α2(1− δ)ε2

]
≥ 1− e−cε

−2
,

where Kε is the first iteration with ‖∇f (xk)‖2 ≤ ε.

� Matches usual O(ε−2) worst-case complexity bound with high probability

� Implies E [Kε] = O(ε−2) and almost-sure convergence

� Constant C depends on p (from fully linear error bounds), c depends on p and δ

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 11

Convergence Proof — Sketch

Proof sketch: while ‖∇f (xk)‖2 > ε, bound number of iterations across 6 cases.

Good subspace:

1. ∆k large + successful: get f (xk)− f (xk+1) ≥ Ω(ε2), so happens O(ε−2) times.

2. ∆k large + unsuccessful: bounded by case #1 from ∆k management.

3. ∆k small + unsuccessful + good model: doesn’t happen (Taylor accuracy)

4. ∆k small + successful: bounded by cases #3 and #5 from ∆k management

5. ∆k small + bad model: keep Qk and ∆k , build good model (next time #3 or #4)

(extra difficulties: different ∆k large/small thresholds, 4 ↔ 5, criticality steps, ...)

Bad subspace:

6. Happens with small probability δ. Need γdec > γ
−1/2
inc to ensure ∆k not decreased

too quickly in these iterations.
Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 12

Generating Qk

For RSDFO to work, need to be able to generate Qk such that

‖QT
k ∇f (xk)‖2 ≥ α‖∇f (xk)‖2 with probability ≥ 1− δ.

If Qk is a random orthonormal set (e.g. block coordinates), need p ∼ αn.

Instead, make Qk a Johnson-Lindenstrauss embedding, such as

� Qk has i.i.d. Gaussian entries N (0, 1/p)

� Qk has s random nonzero entries per row, value ±1/
√
s with probability 1/2

Then, only need p ∼ (1− α)−2| log δ|, independent of n.

Accuracy order Model-based DFO RSDFO Taylor models

1st O(n2ε−2) O(ε−2) O(ε−2)

2nd O(n9ε−3) ?? O(ε−3)

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 13

Generating Qk

For RSDFO to work, need to be able to generate Qk such that

‖QT
k ∇f (xk)‖2 ≥ α‖∇f (xk)‖2 with probability ≥ 1− δ.

If Qk is a random orthonormal set (e.g. block coordinates), need p ∼ αn.

Instead, make Qk a Johnson-Lindenstrauss embedding, such as

� Qk has i.i.d. Gaussian entries N (0, 1/p)

� Qk has s random nonzero entries per row, value ±1/
√
s with probability 1/2

Then, only need p ∼ (1− α)−2| log δ|, independent of n.

Accuracy order Model-based DFO RSDFO Taylor models

1st O(n2ε−2) O(ε−2) O(ε−2)

2nd O(n9ε−3) ?? O(ε−3)

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 13

Generating Qk

For RSDFO to work, need to be able to generate Qk such that

‖QT
k ∇f (xk)‖2 ≥ α‖∇f (xk)‖2 with probability ≥ 1− δ.

If Qk is a random orthonormal set (e.g. block coordinates), need p ∼ αn.

Instead, make Qk a Johnson-Lindenstrauss embedding, such as

� Qk has i.i.d. Gaussian entries N (0, 1/p)

� Qk has s random nonzero entries per row, value ±1/
√
s with probability 1/2

Then, only need p ∼ (1− α)−2| log δ|, independent of n.

Accuracy order Model-based DFO RSDFO Taylor models

1st O(n2ε−2) O(ε−2) O(ε−2)

2nd O(n9ε−3) ?? O(ε−3)

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 13

Outline

1. Introduction to derivative-free optimization (DFO)

2. Subspace DFO methods: algorithm & theory

3. Specialization to least-squares: numerical results

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 14

DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk +s) ≈ mk(s) = r(xk)+J(xk)s

� Jacobian not available: use

mk(s) = r(xk) + Jks

� Find Jk using linear interpolation

In both cases, get a local quadratic model

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Implemented in state-of-the-art solver DFO-LS [Cartis et al., 2019]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 15

DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk +s) ≈ mk(s) = r(xk)+J(xk)s

� Jacobian not available: use

mk(s) = r(xk) + Jks

� Find Jk using linear interpolation

In both cases, get a local quadratic model

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Implemented in state-of-the-art solver DFO-LS [Cartis et al., 2019]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 15

DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk +s) ≈ mk(s) = r(xk)+J(xk)s

� Jacobian not available: use

mk(s) = r(xk) + Jks

� Find Jk using linear interpolation

In both cases, get a local quadratic model

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Implemented in state-of-the-art solver DFO-LS [Cartis et al., 2019]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 15

DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk +s) ≈ mk(s) = r(xk)+J(xk)s

� Jacobian not available: use

mk(s) = r(xk) + Jks

� Find Jk using linear interpolation

In both cases, get a local quadratic model

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Implemented in state-of-the-art solver DFO-LS [Cartis et al., 2019]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 15

DFO for Least-Squares

Standard method has first-order complexity O(n6ε−2): dependency on n between first &

second order methods. [Cartis & R., 2019]

RSDFO with Gauss-Newton models gets dimension-independent O(ε−2) bound.

Practical considerations:

� Linear algebra cost of standard method is O(mn2 + n3) flops per iteration from

linear interpolation, RSDFO only needs O(mp2 + np2)

� Standard method reuses (possibly expensive) evaluations of r(x) across iterations,

RSDFO has to resample all points from new subspace

Key idea (DFBGN): use the locations of interpolation points to define the subspace

=⇒ cheap linear algebra and fewer evaluations! If we have interpolation points

{xk , y1, . . . , yp}, then make Qk an orthonormal basis for {y1 − xk , . . . , yp − xk}.

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 16

DFO for Least-Squares

Standard method has first-order complexity O(n6ε−2): dependency on n between first &

second order methods. [Cartis & R., 2019]

RSDFO with Gauss-Newton models gets dimension-independent O(ε−2) bound.

Practical considerations:

� Linear algebra cost of standard method is O(mn2 + n3) flops per iteration from

linear interpolation, RSDFO only needs O(mp2 + np2)

� Standard method reuses (possibly expensive) evaluations of r(x) across iterations,

RSDFO has to resample all points from new subspace

Key idea (DFBGN): use the locations of interpolation points to define the subspace

=⇒ cheap linear algebra and fewer evaluations! If we have interpolation points

{xk , y1, . . . , yp}, then make Qk an orthonormal basis for {y1 − xk , . . . , yp − xk}.
Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 16

Numerical Results — low accuracy

DFBGN vs. DFO-LS (low accuracy τ = 10−1) [% problems solved vs. # evals]

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

DFO-LS

DFO-LS (init n/100)

DFBGN (p = n)

DFBGN (p = n/2)

DFBGN (p = n/10)

DFBGN (p = n/100)

Medium-scale problems, n ≈ 100

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

DFO-LS

DFO-LS (init n/100)

DFBGN (p = n)

DFBGN (p = n/2)

DFBGN (p = n/10)

DFBGN (p = n/100)

Large problems n ≈ 1000, 12hr timeout

DFBGN performance improves with larger p. Outperforms DFO-LS on large problems...

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 17

Timeout Rate

Proportion of large problems (n ≈ 1000) where solver times out (before usual

termination):

Solver Timeout

DFO-LS 93%

DFO-LS (init n/100) 98%

DFBGN (p = n/100) 35%

DFBGN (p = n/10) 74%

DFBGN (p = n/2) 82%

DFBGN (p = n) 66%

... because it doesn’t time out
Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 18

Numerical Results — low budget

Other advantage: DFBGN progresses after p � n evaluations (important when n large)

0.0 0.2 0.4 0.6 0.8 1.0

Budget (in gradients)

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

N
or
m
al
iz
ed

O
b
je
ct
iv
e
V
al
u
e

DFO-LS

DFO-LS (init n/100)

p = n

p = n/2

p = n/10

p = n/100

ARWHDNE, n = 2000

0.0 0.2 0.4 0.6 0.8 1.0

Budget (in gradients)

100

5× 10−1

6× 10−1

7× 10−1

8× 10−1

9× 10−1

N
or
m
al
iz
ed

O
b
je
ct
iv
e
V
al
u
e

DFO-LS

DFO-LS (init n/100)

p = n

p = n/2

p = n/10

p = n/100

CHANDHEQ, n = 2000

(normalized objective reduction vs. # evaluations, 12hr timeout)

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 19

Conclusions & Future Work

Conclusions

� Scalability of model-based DFO is currently limited (in theory & practice)

� New algorithms reduce linear algebra cost and iteration complexity

� Novel complexity analysis with dimension-independent bounds

� DFBGN outperforms state-of-the-art code on large-scale problems

Future Work

� Second-order complexity analysis

� Efficient implementation of subspace quadratic models

� Similar strategies for direct search DFO

[arXiv:2102.12016, Github: numerical algorithms group/dfbgn]

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 20

References i

A. S. Bandeira, K. Scheinberg, and L. N. Vicente, Computation of sparse low degree interpolating

polynomials and their application to derivative-free optimization, Mathematical Programming, 134 (2012),

pp. 223–257.

E. H. Bergou, E. Gorbunov, and P. Richtárik, Stochastic three points method for unconstrained

smooth minimization, SIAM Journal on Optimization, (2020).

C. Cartis, J. Fiala, B. Marteau, and L. Roberts, Improving the flexibility and robustness of model-based

derivative-free optimization solvers, ACM Transactions on Mathematical Software, 45 (2019), pp. 32:1–32:41.

C. Cartis, J. Fowkes, and Z. Shao, A randomised subspace Gauss-Newton method for nonlinear

least-squares, in Workshop on “Beyond first-order methods in ML systems” at the 37th International

Conference on Machine Learning, Vienna, Austria, 2020.

C. Cartis, N. I. M. Gould, and P. L. Toint, On the complexity of steepest descent, Newton’s and

regularized Newton’s methods for nonconvex unconstrained optimization problems, SIAM Journal on

Optimization, 20 (2010), pp. 2833–2852.

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 21

References ii

C. Cartis and L. Roberts, A derivative-free Gauss-Newton method, Mathematical Programming

Computation, 11 (2019), pp. 631–674.

, Scalable subspace methods for derivative-free nonlinear least-squares optimization, arXiv preprint

arXiv:2102.12016, (2021).

C. Cartis, L. Roberts, and O. Sheridan-Methven, Escaping local minima with local derivative-free

methods: a numerical investigation, Optimization, to appear (2021).

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-Free Optimization, vol. 8 of

MPS-SIAM Series on Optimization, MPS/SIAM, Philadelphia, 2009.

M. J. Ehrhardt and L. Roberts, Inexact derivative-free optimization for bilevel learning, Journal of

Mathematical Imaging and Vision, 63 (2020), pp. 580–600.

R. Garmanjani, D. Júdice, and L. N. Vicente, Trust-region methods without using derivatives: Worst

case complexity and the nonsmooth case, SIAM Journal on Optimization, 26 (2016), pp. 1987–2011.

S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Direct search based on probabilistic descent,

SIAM Journal on Optimization, 25 (2015), pp. 1515–1541.

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 22

References iii

J. C. Gross and G. T. Parks, Optimization by moving ridge functions: Derivative-free optimization for

computationally intensive functions, arXiv preprint arXiv:2007.04893, (2020).

Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions, Foundations of

Computational Mathematics, 17 (2017), pp. 527–566.

A. Neumaier, H. Fendl, H. Schilly, and T. Leitner, VXQR: Derivative-free unconstrained optimization

based on QR factorizations, Soft Computing, 15 (2011), pp. 2287–2298.

A. Patrascu and I. Necoara, Efficient random coordinate descent algorithms for large-scale structured

nonconvex optimization, Journal of Global Optimization, 61 (2015), pp. 19–46.

M. Porcelli and P. L. Toint, Global and local information in structured derivative free optimization with

BFO, arXiv preprint arXiv:2001.04801, (2020).

M. J. D. Powell, On trust region methods for unconstrained minimization without derivatives,

Mathematical Programming, 97 (2003), pp. 605–623.

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, Evolution strategies as a scalable alternative

to reinforcement learning, arXiv preprint arXiv:1703.03864, (2017).

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 23

References iv

G. Ughi, V. Abrol, and J. Tanner, An empirical study of derivative-free-optimization algorithms for

targeted black-box attacks in deep neural networks, arXiv preprint arXiv:2012.01901, (2020).

S. J. Wright, Coordinate descent algorithms, Mathematical Programming, 151 (2015), pp. 3–34.

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 24

Derivative-Free Block Gauss-Newton

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

1. Build low-dimensional model and calculate trust-region step sk = Qk ŝk

2. Evaluate f (xk + sk), accept/reject step, and update ∆k (as before)

3. Add xk + sk to interpolation set

4. Remove pdrop ≥ 2 points from the interpolation set

5. Add random orthogonal directions xk + ∆kd until p + 1 interpolation points

Comments:

� pdrop ≥ 2 ensures new direction(s) d added next iteration =⇒ Qk+1 6= Qk .

– Practical choice: pdrop = 2 on success, p/10 otherwise (geometry-aware removal)

� Linear algebra cost O(mp2 + np2) vs. standard method O(mn2 + n3)

� Package on Github: numerical algorithms group/dfbgn

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 25

Derivative-Free Block Gauss-Newton

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

1. Build low-dimensional model and calculate trust-region step sk = Qk ŝk

2. Evaluate f (xk + sk), accept/reject step, and update ∆k (as before)

3. Add xk + sk to interpolation set

4. Remove pdrop ≥ 2 points from the interpolation set

5. Add random orthogonal directions xk + ∆kd until p + 1 interpolation points

Comments:

� pdrop ≥ 2 ensures new direction(s) d added next iteration =⇒ Qk+1 6= Qk .

– Practical choice: pdrop = 2 on success, p/10 otherwise (geometry-aware removal)

� Linear algebra cost O(mp2 + np2) vs. standard method O(mn2 + n3)

� Package on Github: numerical algorithms group/dfbgn

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 25

General Objective Problems

General objective case is much harder — rely on quadratic interpolation models.

xk

2 points per subspace direction

xk

xk+1

After step, how to rotate subspace?

Subspace dimensions decoupled from interpolation directions y t − xk

Subspace DFO Methods — Lindon Roberts (lindon.roberts@anu.edu.au) 26

