Improving the scalability of model-based derivative-free
optimization

With Coralia Cartis (Oxford), Jan Fiala & Benjamin Marteau (NAG)

Lindon Roberts, Mathematical Sciences Institute, ANU (1indon.roberts@anu.edu.au)

Data Science Down Under (University of Newcastle)
11 December 2019

Supported by EPSRC (EP/L015803/1) & NAG Ltd.

1. Derivative-free optimization for least-squares problems
2. Scalability bottleneck

3. Model-based subspace method

4. Results

5. General objective case

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 1

Derivative-Free Optimization

o 6

e Objective f nonlinear, nonconvex, structure unknown

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Derivative-Free Optimization

o 6

e Objective f nonlinear, nonconvex, structure unknown
e Standard methods locally approximate f by quadratic models (e.g. Taylor series)
e How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation (backprop)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Derivative-Free Optimization

o 6

Objective f nonlinear, nonconvex, structure unknown

Standard methods locally approximate f by quadratic models (e.g. Taylor series)
How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation (backprop)
Difficulties when function evaluation is

— ‘Black-box’

— Noisy

— Computationally expensive

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Derivative-Free Optimization

o 6

Objective f nonlinear, nonconvex, structure unknown

Standard methods locally approximate f by quadratic models (e.g. Taylor series)
How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation (backprop)
Difficulties when function evaluation is

— ‘Black-box’

— Noisy

— Computationally expensive
Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]
— Hyperparameter tuning, adversarial example generation, ... [Liu & Chen (2019)]

— Plus applications in finance, climate, engineering, ...

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic
algorithms, Bayesian optimization, ...

e Classically (e.g. Newton's method),

1
f(xk +5) =~ mi(s) = F(x) + VF(xx) s+ ESTV2f(xk)s

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 3

Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic
algorithms, Bayesian optimization, ...

e Classically (e.g. Newton's method),

1
f(xk +5) =~ mi(s) = F(x) + VF(xx) s+ ESTV2f(xk)s

e Instead, approximate

1
f(xi +8) =~ mi(s) = F(xi) + 8k ' s+ §sTHks

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 3

Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic
algorithms, Bayesian optimization, ...

e Classically (e.g. Newton's method),

1
f(xk +5) =~ mi(s) = F(x) + VF(xx) s+ ESTV2f(xk)s

e Instead, approximate

1
f(xi +8) =~ mi(s) = F(xi) + 8k ' s+ ESTHks

e Find gy and Hj without using derivatives: interpolate f over a set of points
e Geometry of points good = interpolation model accurate = convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 3

DFO for Least-S es — Basic Framework

min £(x) = o [r(x)[3, r(x) € R"

Classical Gauss-Newton Derivative-Free Gauss-Newton

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-S es — Basic Framework

1
min f(x) = SIMGIB, r(x) € R”
Classical Gauss-Newton Derivative-Free Gauss-Newton

e Linearize r at x, using Jacobian

r(xg +5) = mg(s) = r(xq) + J(xk)s

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-Squares — Basic Framework

min f(x) = %Hr(x)H% r(x) € R™

xRN
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearize r at x, using Jacobian e Jacobian not available: use
r(xx +s) = mg(s) = r(xx) + J(xk)s my(s) = r(xx) + Jis

e Find Jy by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-Squares — Basic Framework

min f(x) = %Hr(x)H%, r(x) € R™

xRN
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearize r at x, using Jacobian e Jacobian not available: use
r(xx +s) = my(s) = r(xg) + J(xk)s my(s) = r(xx) + Jis

e Find Jy by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)
1

f(x +5) & mi(s) = 5 llm(s)3

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-Squares — Algorithm

Implement in trust-region method:
1. Build interpolation model

Flxi+5) ~ mils) = o [me(s)]3

2. Minimize model inside trust region

sk = argminmy(s) st |Is|l2 < Ax.
sER”

3. Evaluate f(xx + sk), check sufficient decrease, select xx11 and Agiq

4. Update interpolation set: add xx + s, and move points to ensure good geometry (if needed)
<+ requires calculation of Lagrange polynomials

Implemented in DFO-LS package (Github: numerical algorithms group/dfols)
Also have Py-BOBYQA for general objectives (Github), using quadratic interpolation

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 5

Scalability

e DFO methods are well-known not to scale well (i.e. n large)

— e.g. adversarial examples, weather forecasting/data assimilation, ...

Where is the issue for model-based DFO?

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 6

Scalability

Runtime of DFO-LS on generalized Rosenbrock function:

250007 mmm Model construction
I Lagrange polynomial construction

I Other
20000

= 15000

Runtime

10000 4

5000

0 T T ¥
100 200 300 400 500 600 700 800 900 1000

n
Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

Interpolation

Interpolation linear system (for model construction):

(Y1 - Xk)T fi(Yl) - fi(Xk)
Sk,i = , Vi=1,...,m,

(v — x)T ri(yn) — ri(xe)

where Jy has rows gzi.

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 8

Interpolation

Interpolation linear system (for model construction):

! ri(y1) — ri(xk)

8k,i =) Vi:1,...,m.,

(y1 — xk)

(v — x)T ri(yn) — ri(xe)

where Jy has rows gzi.

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations
required?

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 8

Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n — existing approaches

e Block Coordinate Descent: perturb subset of variables each iteration
[Xu & Yin (2017), Richtarik & Takag (2014)]
e Block Coordinate Gauss-Newton: generalize BCD to least-squares

[Cartis & Fowkes (2018)]
e Probabilistic direct search: random search direction at each iteration
[Gratton, Royer, Vicente & Zhang (2015)]
e Projection DFO methods: optimize over random subspace with existing method
[Qian, Hu & Yu (2016), Wang, Du, Balakrishnan & Singh (2018)]

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 10

Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n

Use interpolation set {Xx,y1,...,¥p} for p < n, then solve
)’ ri(y1) — ri(x«)
8k,i = : , YVi=1,...,m.
(¥p — X« ri(yp) — ri(x)

Underdetermined system — take minimal norm solution.

(y1 — xk
)T

Cost = factorization + solve = O(np?) + O(mp?) =~ O(mp?)

Choose p based on computational resources
Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 10

Subspace Methods

e Model only varies in subspace Yy 1= span{y1 — Xk,¥p — Xk }.

A

r(xx + Qk8) ~ My (8) := r(xk) + Ji8,

where Q, € R"*P is orthonormal basis for) (from QR factorization).
e Solve trust-region subproblem in subspace
X A NP 1. a2
sk = QiSk, where Sk = argmin Mk(8) = §||mk(s)||2,
[I8]]2<A

e Need a mechanism to explore whole space:

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 11

Subspace Methods

e Model only varies in subspace Yy 1= span{y1 — Xk,¥p — Xk }.

r(xx + Qk8) ~ My (8) := r(xk) + Ji8,
where Q, € R"*P is orthonormal basis for) (from QR factorization).
e Solve trust-region subproblem in subspace

R . C 1. .
sk = QiSk, where Sk = argmin Mk(8) = §||mk(s)||§,
[I8ll2<Ax

e Need a mechanism to explore whole space:

— i.e. need to change) on each iteration
— Replace interpolation points with random directions (orthogonal to V)
— No free lunch: extra evaluations used to change) to save on linear algebra

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 11

Changing),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

Build low-dimensional model and calculate trust-region step §; € RP

Evaluate f(xx + QxSk), accept/reject step, and update Ay (as before)

Add x, + QxS to interpolation set

Remove pgrop > 2 points from the interpolation set

Add random orthogonal directions xx + Axd for d L Vi until we have p + 1 interpolation
points

ok w0

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 12

Changing),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

Build low-dimensional model and calculate trust-region step §; € RP

Evaluate f(xx + QxSk), accept/reject step, and update Ay (as before)

Add x, + QxS to interpolation set

Remove pgrop > 2 points from the interpolation set

Add random orthogonal directions x, + Axd for d L Yy until we have p + 1 interpolation
points

ok w0

Comments:

® pdrop > 2 ensures new direction(s) d added next iteration = Vi1 # V.
e Linear algebra cost O(mp? + np® + p®) vs. full space method O(mn? + n%)

e Choosing points to remove uses Lagrange polynomials (geometry-aware)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 12

Choice of pgrop

How to choose p,,,?

e Large change to Yy each iteration (e.g. pgrop = p/10) — explore whole space quickly
e Small change to Y each iteration (e.g. pdrop = 2) — use few evaluations
e Compromise? (pgrop = 2 on successful iterations, p/10 on unsuccessful iterations)

10 10

0.8 0.8
E H P il ittt vttt aln -~
s El e
El g E g ra
£ 06 £ 06 7
= = 1
]] 1
z S /
2 044 20444
= k1 1
2 2 |4
2 2
=% =%

0.2 —&— Durop = /10 0.2

— P =2
==+ Pirop mixed
0.0 T T T T 0.0 T T T T
1 2 1 8 16 32 1 2 4 8 16 32
Budget / min budget of any solver Budget / min budget of any solver
DFBGN, p=n/4 DFBGN, p=n
Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 13

Numerical Results — high accuracy

Compare DFBGN method to DFO-LS (high accuracy 7 = 107°)

1.0

0.84

0.6 1

Proportion problems solved

0.4 1 —e— DFO-LS

DFO-LS (init n/100)

—— DFBGN (p=n)

0.2 S=o=== =" ==- DFBGN (p=n/2) 94

’_,,—' e DFBGN (p = n/10)

- —— T o= SN (p=

0o Lmstm= =R e< DFBGN ‘(,; 1/100)

1 2 4 8 16 32

Budget / min budget of any solver

n = 100 [CUTEst]

Performance improves with increasing block size

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 14

Numerical Results — low accuracy

Compare DFBGN method to DFO-LS (low accuracy 7 = 1071)

1.0

—
0.8
T
s -
2 - - -
£ 0.6 - e =
< »” %
_g ,/ '
: oS
£ 041 7 —e— DFO-LS
= '
£ & ¥ DFO-LS (init n/100)
g 7’
2 e #' — DFBGN (p=n)
021 gl = ——=- DFBGN (p=n/2)
/ ’/ /x’ -e- DFBGN (p =n/10)
s ‘f_;__,-x* -x- DFBGN (p = n/100)
00 fm=u= : ; .
1 2 4 8 16 32

Budget / min budget of any solver

n = 100 [CUTEst]

DFBGN is more suitable for low accuracy solutions

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 15

Numerical Results — high dimensional problems

High-dimensional test set n ~ 1000 [CUTEst], max 12hrs per problem

0.8

0.6 4

Proportion problems solved

=6 == g
B Y
/')(s

DFO-LS
DFO-LS (init n/100)
DFBGN (p=n)

- DFBGN (p=n/2)
DFBGN (p = n/10)
DFBGN (p = n/100)

0.0
1

2 4 8 16 32
Budget / min budget of any solver

7 = 0.5, vs. budget

Proportion problems solved

1.0
—o— DFO-LS
DFO-LS (init n/100)
0.84 —— DFBGN (p=n)
——- DFBCN (p=n/2)
-~ DFBGN (p = n/10)
0.64 == DFBGN (p = n/100) PP doimininanimins
/
F Caln, o i ol v
'/—"'7"" 4
0.4 s 1
x4 -
Y s YT S R
= =
I’_
Px]
0.2 Vil)/’
B i
L
P
0.0 - . - .
1 2 4 8 16

Budget / min budget of any solver

7 = 0.1, vs. budget

DFBGN outperforms DFO-LS for low accuracy solutions ...

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

16

Timeout Rate

Proportion of problems where solver times out (before usual termination):

Solver Timeout

DFO-LS 93%
DFO-LS (init n/100) 98%

(
DFBGN (p = n/100) 35%
DFBGN (p = n/10) 74%
DFBGN (p = n/2) 82%
DFBGN (p = n) 66%

... because it doesn't time out

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 17

Numerical Results — low budget

Other advantage: DFBGN make progress after p < n evaluations (especially important when n

large)
100 10°
T
t\ | —e— DFOLS
i H DFO-LS (init n/100) 91071
% 1\ Vo=
Y 10-1 = "‘: \\ | == p=n/2 2 sx10
Wi 1 —e- p=n/mo =
= I =x= p=n/100 £ 1x10m
! &
g
> 4% 107! =
3 3
6 S
y T "] —e— pro-Ls
x10 E] DFO-LS (init n,/100)
S —_p=n
Zo5x107 . p=n/2
2x107! -o- p=n/10
-X= p=n/100
0.0 02 04 0.6 08 10 0.0 02 0.4 0.6 08 10
Budget (in gradients) Budget (in gradients)
ARWHDNE, n = 2000 CHANDHEQ, n = 2000

(normalized objective reduction vs. # evaluations, 12hr timeout)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 18

General Objective Problems

General objective case is much harder — rely on quadratic interpolation models. Example:

Xk

2 points per subspace direction After step, how to rotate subspace?

e Subspace dimensions decoupled from interpolation directions y; — xj
e Current idea: linear model (p + 1 points) + extra curvature-only points (not recycled)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 19

Conclusion & Future Work

Conclusions

e Model construction cost a key barrier to scalability of model-based DFO
e Subspace method gives cheaper linear algebra: O(n) vs. O(n?)
e Useful for: low accuracy, small budget, and/or limited computational resources

e Extending to large-scale general objective problems

Future Work

e Sketching for nonlinear least-squares
e Convergence theory

e Exploit Jacobian sparsity

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 20

References

@ Coralia Cartis, Jan Fiala, Benjamin Marteau, and Lindon Roberts.
Improving the flexibility and robustness of model-based derivative-free
optimization solvers.

ACM Transactions on Mathematical Software, 45(3):32:1-32:41, 2019.

@ Coralia Cartis and Lindon Roberts.
A derivative-free Gauss-Newton method.
Mathematical Programming Computation, 11(4):631-674, 2019.

[3 Lindon Roberts.
Derivative-Free Algorithms for Nonlinear Optimisation Problems.
PhD thesis, University of Oxford, 2019.

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 21

Choice of pgrop

Choise of pgrop prevents Ay too small too soon (need for convergence)

10°

10!

107!

Ay and [lgil|

1073

10-°

1077

~

_____________ — A

M === lall

—e— f(x;) normalised

10 15 20 25
Iteration

pdrap =2

30

100

61077

1x107"

3x107

Normalized Objective Value

(CUTEst problem LUKSAN13 with n = 100)

J—

=== lloxll

107

107

—e— () normalised

.m%

F10!

F10-9

Fl-°

F1-7

Objective Value

b2

101

0 200 100 600 800 1000 1200
Tteration

Prop Mixed

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

1400

1600

22

