
Improving the scalability of model-based derivative-free

optimization

With Coralia Cartis (Oxford), Jan Fiala & Benjamin Marteau (NAG)

Lindon Roberts, Mathematical Sciences Institute, ANU (lindon.roberts@anu.edu.au)

Data Science Down Under (University of Newcastle)

11 December 2019

Supported by EPSRC (EP/L015803/1) & NAG Ltd.



Outline

1. Derivative-free optimization for least-squares problems

2. Scalability bottleneck

3. Model-based subspace method

4. Results

5. General objective case

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 1



Derivative-Free Optimization

min
x∈Rn

f (x)

• Objective f nonlinear, nonconvex, structure unknown

• Standard methods locally approximate f by quadratic models (e.g. Taylor series)

• How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

• Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

• Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ... [Liu & Chen (2019)]

– Plus applications in finance, climate, engineering, ...

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Derivative-Free Optimization

min
x∈Rn

f (x)

• Objective f nonlinear, nonconvex, structure unknown

• Standard methods locally approximate f by quadratic models (e.g. Taylor series)

• How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

• Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

• Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ... [Liu & Chen (2019)]

– Plus applications in finance, climate, engineering, ...

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Derivative-Free Optimization

min
x∈Rn

f (x)

• Objective f nonlinear, nonconvex, structure unknown

• Standard methods locally approximate f by quadratic models (e.g. Taylor series)

• How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

• Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

• Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ... [Liu & Chen (2019)]

– Plus applications in finance, climate, engineering, ...

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Derivative-Free Optimization

min
x∈Rn

f (x)

• Objective f nonlinear, nonconvex, structure unknown

• Standard methods locally approximate f by quadratic models (e.g. Taylor series)

• How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backprop)

• Difficulties when function evaluation is

– ‘Black-box’

– Noisy

– Computationally expensive

• Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Hyperparameter tuning, adversarial example generation, ... [Liu & Chen (2019)]

– Plus applications in finance, climate, engineering, ...

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 2



Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic

algorithms, Bayesian optimization, ...

• Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)>s +
1

2
s>∇2f (xk)s

• Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
>s +

1

2
s>Hks

• Find gk and Hk without using derivatives: interpolate f over a set of points

• Geometry of points good =⇒ interpolation model accurate =⇒ convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 3



Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic

algorithms, Bayesian optimization, ...

• Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)>s +
1

2
s>∇2f (xk)s

• Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
>s +

1

2
s>Hks

• Find gk and Hk without using derivatives: interpolate f over a set of points

• Geometry of points good =⇒ interpolation model accurate =⇒ convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 3



Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic

algorithms, Bayesian optimization, ...

• Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)>s +
1

2
s>∇2f (xk)s

• Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
>s +

1

2
s>Hks

• Find gk and Hk without using derivatives: interpolate f over a set of points

• Geometry of points good =⇒ interpolation model accurate =⇒ convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 3



DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

• Linearize r at xk using Jacobian

r(xk + s) ≈ mk(s) = r(xk) + J(xk)s

• Jacobian not available: use

mk(s) = r(xk) + Jks

• Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

• Linearize r at xk using Jacobian

r(xk + s) ≈ mk(s) = r(xk) + J(xk)s

• Jacobian not available: use

mk(s) = r(xk) + Jks

• Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

• Linearize r at xk using Jacobian

r(xk + s) ≈ mk(s) = r(xk) + J(xk)s

• Jacobian not available: use

mk(s) = r(xk) + Jks

• Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

• Linearize r at xk using Jacobian

r(xk + s) ≈ mk(s) = r(xk) + J(xk)s

• Jacobian not available: use

mk(s) = r(xk) + Jks

• Find Jk by interpolation — maintain a

cloud of points which moves towards

solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 4



DFO for Least-Squares — Algorithm

Implement in trust-region method:

1. Build interpolation model

f (xk + s) ≈ mk(s) :=
1

2
‖mk(s)‖2

2.

2. Minimize model inside trust region

sk = arg min
s∈Rn

mk(s) s.t. ‖s‖2 ≤ ∆k .

3. Evaluate f (xk + sk), check sufficient decrease, select xk+1 and ∆k+1

4. Update interpolation set: add xk + sk and move points to ensure good geometry (if needed)

← requires calculation of Lagrange polynomials

Implemented in DFO-LS package (Github: numerical algorithms group/dfols)

Also have Py-BOBYQA for general objectives (Github), using quadratic interpolation

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 5



Scalability

• DFO methods are well-known not to scale well (i.e. n large)

– e.g. adversarial examples, weather forecasting/data assimilation, ...

Where is the issue for model-based DFO?

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 6



Scalability

Runtime of DFO-LS on generalized Rosenbrock function:

100 200 300 400 500 600 700 800 900 1000
n

0

5000

10000

15000

20000

25000

R
u
n
ti
m
e
(s
)

Model construction

Lagrange polynomial construction

Other

Dominated by interpolation linear solves

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 7



Interpolation

Interpolation linear system (for model construction):(y1 − xk)>

...

(yn − xk)>

 gk,i =

ri (y1)− ri (xk)
...

ri (yn)− ri (xk)

 , ∀i = 1, . . . ,m,

where Jk has rows g>k,i .

Cost = factorization + solve = O(n3) +O(mn2) ≈ O(mn2)

Goal

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 8



Interpolation

Interpolation linear system (for model construction):(y1 − xk)>

...

(yn − xk)>

 gk,i =

ri (y1)− ri (xk)
...

ri (yn)− ri (xk)

 , ∀i = 1, . . . ,m,

where Jk has rows g>k,i .

Cost = factorization + solve = O(n3) +O(mn2) ≈ O(mn2)

Goal

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 8



Subspace Methods

Goal

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n — existing approaches

• Block Coordinate Descent: perturb subset of variables each iteration

[Xu & Yin (2017), Richtárik & Takáč (2014)]

• Block Coordinate Gauss-Newton: generalize BCD to least-squares

[Cartis & Fowkes (2018)]

• Probabilistic direct search: random search direction at each iteration

[Gratton, Royer, Vicente & Zhang (2015)]

• Projection DFO methods: optimize over random subspace with existing method

[Qian, Hu & Yu (2016), Wang, Du, Balakrishnan & Singh (2018)]

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 9



Subspace Methods

Goal

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n

Use interpolation set {xk , y1, . . . , yp} for p < n, then solve(y1 − xk)>

...

(yp − xk)>

 gk,i =

ri (y1)− ri (xk)
...

ri (yp)− ri (xk)

 , ∀i = 1, . . . ,m.

Underdetermined system =⇒ take minimal norm solution.

Cost = factorization + solve = O(np2) +O(mp2) ≈ O(mp2)

Choose p based on computational resources

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 10



Subspace Methods

Goal

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n

Use interpolation set {xk , y1, . . . , yp} for p < n, then solve(y1 − xk)>

...

(yp − xk)>

 gk,i =

ri (y1)− ri (xk)
...

ri (yp)− ri (xk)

 , ∀i = 1, . . . ,m.

Underdetermined system =⇒ take minimal norm solution.

Cost = factorization + solve = O(np2) +O(mp2) ≈ O(mp2)

Choose p based on computational resources
Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 10



Subspace Methods

• Model only varies in subspace Yk := span{y1 − xk , . . . , yp − xk}.

r(xk + Qk ŝ) ≈ m̂k(ŝ) := r(xk) + Ĵk ŝ,

where Qk ∈ Rn×p is orthonormal basis for Yk (from QR factorization).

• Solve trust-region subproblem in subspace

sk = Qk ŝk , where ŝk = arg min
‖ŝ‖2≤∆k

m̂k(ŝ) =
1

2
‖m̂k(ŝ)‖2

2,

• Need a mechanism to explore whole space:

– i.e. need to change Yk on each iteration

– Replace interpolation points with random directions (orthogonal to Yk)

– No free lunch: extra evaluations used to change Yk to save on linear algebra

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 11



Subspace Methods

• Model only varies in subspace Yk := span{y1 − xk , . . . , yp − xk}.

r(xk + Qk ŝ) ≈ m̂k(ŝ) := r(xk) + Ĵk ŝ,

where Qk ∈ Rn×p is orthonormal basis for Yk (from QR factorization).

• Solve trust-region subproblem in subspace

sk = Qk ŝk , where ŝk = arg min
‖ŝ‖2≤∆k

m̂k(ŝ) =
1

2
‖m̂k(ŝ)‖2

2,

• Need a mechanism to explore whole space:

– i.e. need to change Yk on each iteration

– Replace interpolation points with random directions (orthogonal to Yk)

– No free lunch: extra evaluations used to change Yk to save on linear algebra

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 11



Changing Yk

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

1. Build low-dimensional model and calculate trust-region step ŝk ∈ Rp

2. Evaluate f (xk + Qk ŝk), accept/reject step, and update ∆k (as before)

3. Add xk + Qk ŝk to interpolation set

4. Remove pdrop ≥ 2 points from the interpolation set

5. Add random orthogonal directions xk + ∆kd for d ⊥ Yk until we have p + 1 interpolation

points

Comments:

• pdrop ≥ 2 ensures new direction(s) d added next iteration =⇒ Yk+1 6= Yk .

• Linear algebra cost O(mp2 + np2 + p3) vs. full space method O(mn2 + n3)

• Choosing points to remove uses Lagrange polynomials (geometry-aware)

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 12



Changing Yk

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

1. Build low-dimensional model and calculate trust-region step ŝk ∈ Rp

2. Evaluate f (xk + Qk ŝk), accept/reject step, and update ∆k (as before)

3. Add xk + Qk ŝk to interpolation set

4. Remove pdrop ≥ 2 points from the interpolation set

5. Add random orthogonal directions xk + ∆kd for d ⊥ Yk until we have p + 1 interpolation

points

Comments:

• pdrop ≥ 2 ensures new direction(s) d added next iteration =⇒ Yk+1 6= Yk .

• Linear algebra cost O(mp2 + np2 + p3) vs. full space method O(mn2 + n3)

• Choosing points to remove uses Lagrange polynomials (geometry-aware)

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 12



Choice of pdrop

How to choose pdrop?

• Large change to Yk each iteration (e.g. pdrop = p/10) — explore whole space quickly

• Small change to Yk each iteration (e.g. pdrop = 2) — use few evaluations

• Compromise? (pdrop = 2 on successful iterations, p/10 on unsuccessful iterations)

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

pdrop = p/10

pdrop = 2

pdrop mixed

DFBGN, p = n/4

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

pdrop = p/10

pdrop = 2

pdrop mixed

DFBGN, p = n
Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 13



Numerical Results — high accuracy

Compare DFBGN method to DFO-LS (high accuracy τ = 10−5)

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

DFO-LS

DFO-LS (init n/100)

DFBGN (p = n)

DFBGN (p = n/2)

DFBGN (p = n/10)

DFBGN (p = n/100)

n ≈ 100 [CUTEst]

Performance improves with increasing block size

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 14



Numerical Results — low accuracy

Compare DFBGN method to DFO-LS (low accuracy τ = 10−1)

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

DFO-LS

DFO-LS (init n/100)

DFBGN (p = n)

DFBGN (p = n/2)

DFBGN (p = n/10)

DFBGN (p = n/100)

n ≈ 100 [CUTEst]

DFBGN is more suitable for low accuracy solutions

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 15



Numerical Results — high dimensional problems

High-dimensional test set n ≈ 1000 [CUTEst], max 12hrs per problem

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

DFO-LS

DFO-LS (init n/100)

DFBGN (p = n)

DFBGN (p = n/2)

DFBGN (p = n/10)

DFBGN (p = n/100)

τ = 0.5, vs. budget

1 2 4 8 16 32

Budget / min budget of any solver

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
p
or
ti
on

p
ro
b
le
m
s
so
lv
ed

DFO-LS

DFO-LS (init n/100)

DFBGN (p = n)

DFBGN (p = n/2)

DFBGN (p = n/10)

DFBGN (p = n/100)

τ = 0.1, vs. budget

DFBGN outperforms DFO-LS for low accuracy solutions ...

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 16



Timeout Rate

Proportion of problems where solver times out (before usual termination):

Solver Timeout

DFO-LS 93%

DFO-LS (init n/100) 98%

DFBGN (p = n/100) 35%

DFBGN (p = n/10) 74%

DFBGN (p = n/2) 82%

DFBGN (p = n) 66%

... because it doesn’t time out

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 17



Numerical Results — low budget

Other advantage: DFBGN make progress after p � n evaluations (especially important when n

large)

0.0 0.2 0.4 0.6 0.8 1.0

Budget (in gradients)

100

2× 10−1

3× 10−1

4× 10−1

6× 10−1

N
or
m
al
iz
ed

O
b
je
ct
iv
e
V
al
u
e

DFO-LS

DFO-LS (init n/100)

p = n

p = n/2

p = n/10

p = n/100

ARWHDNE, n = 2000

0.0 0.2 0.4 0.6 0.8 1.0

Budget (in gradients)

100

5× 10−1

6× 10−1

7× 10−1

8× 10−1

9× 10−1

N
or
m
al
iz
ed

O
b
je
ct
iv
e
V
al
u
e

DFO-LS

DFO-LS (init n/100)

p = n

p = n/2

p = n/10

p = n/100

CHANDHEQ, n = 2000

(normalized objective reduction vs. # evaluations, 12hr timeout)

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 18



General Objective Problems

General objective case is much harder — rely on quadratic interpolation models. Example:

xk

2 points per subspace direction

xk

xk+1

After step, how to rotate subspace?

• Subspace dimensions decoupled from interpolation directions yt − xk
• Current idea: linear model (p + 1 points) + extra curvature-only points (not recycled)

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 19



Conclusion & Future Work

Conclusions

• Model construction cost a key barrier to scalability of model-based DFO

• Subspace method gives cheaper linear algebra: O(n) vs. O(n3)

• Useful for: low accuracy, small budget, and/or limited computational resources

• Extending to large-scale general objective problems

Future Work

• Sketching for nonlinear least-squares

• Convergence theory

• Exploit Jacobian sparsity

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 20



References

Coralia Cartis, Jan Fiala, Benjamin Marteau, and Lindon Roberts.

Improving the flexibility and robustness of model-based derivative-free

optimization solvers.

ACM Transactions on Mathematical Software, 45(3):32:1–32:41, 2019.

Coralia Cartis and Lindon Roberts.

A derivative-free Gauss-Newton method.

Mathematical Programming Computation, 11(4):631–674, 2019.

Lindon Roberts.

Derivative-Free Algorithms for Nonlinear Optimisation Problems.

PhD thesis, University of Oxford, 2019.

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 21



Choice of pdrop

Choise of pdrop prevents ∆k too small too soon (need for convergence)

0 5 10 15 20 25 30 35

Iteration

10−7

10−5

10−3

10−1

101

103

∆
k
an

d
‖g

k
‖

∆k

‖gk‖
f(xk) normalised

100

3× 10−1

4× 10−1

6× 10−1

N
or
m
al
iz
ed

O
b
je
ct
iv
e
V
al
u
e

pdrop = 2

0 200 400 600 800 1000 1200 1400 1600

Iteration

10−7

10−5

10−3

10−1

101

103

∆
k
an

d
‖g

k
‖

∆k

‖gk‖
f(xk) normalised

10−13

10−11

10−9

10−7

10−5

10−3

10−1

N
or
m
al
iz
ed

O
b
je
ct
iv
e
V
al
u
e

pdrop mixed

(CUTEst problem LUKSAN13 with n = 100)

Improving scalability of model-based DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 22


