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Derivative-Free Optimization

o 6

e Objective f nonlinear, nonconvex, structure unknown
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Derivative-Free Optimization

o 6

e Objective f nonlinear, nonconvex, structure unknown
e Standard methods locally approximate f by quadratic models (e.g. Taylor series)
e How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation (backprop)
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Derivative-Free Optimization

o 6

Objective f nonlinear, nonconvex, structure unknown

Standard methods locally approximate f by quadratic models (e.g. Taylor series)
How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation (backprop)
Difficulties when function evaluation is

— ‘Black-box’

— Noisy

— Computationally expensive
Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]
— Hyperparameter tuning, adversarial example generation, ... [Liu & Chen (2019)]

— Plus applications in finance, climate, engineering, ...
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Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic
algorithms, Bayesian optimization, ...

e Classically (e.g. Newton's method),

1
f(xk +5) =~ mi(s) = F(x) + VF(xx) s+ ESTV2f(xk)s
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algorithms, Bayesian optimization, ...

e Classically (e.g. Newton's method),

1
f(xk +5) =~ mi(s) = F(x) + VF(xx) s+ ESTV2f(xk)s

e Instead, approximate

1
f(xi +8) =~ mi(s) = F(xi) + 8k ' s+ §sTHks
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Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, Nelder-Mead, direct search, genetic
algorithms, Bayesian optimization, ...

e Classically (e.g. Newton's method),

1
f(xk +5) =~ mi(s) = F(x) + VF(xx) s+ ESTV2f(xk)s

e Instead, approximate

1
f(xi +8) =~ mi(s) = F(xi) + 8k ' s+ ESTHks

e Find gy and Hj without using derivatives: interpolate f over a set of points
e Geometry of points good = interpolation model accurate = convergence

[Conn, Powell, Scheinberg, Vicente, ...]
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DFO for Least-S es — Basic Framework

min £(x) = o [r(x)[3, r(x) € R"

Classical Gauss-Newton Derivative-Free Gauss-Newton
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DFO for Least-S es — Basic Framework

1
min f(x) = SIMGIB, r(x) € R”
Classical Gauss-Newton Derivative-Free Gauss-Newton

e Linearize r at x, using Jacobian

r(xg +5) = mg(s) = r(xq) + J(xk)s
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DFO for Least-Squares — Basic Framework

min f(x) = %Hr(x)H% r(x) € R™

xRN
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearize r at x, using Jacobian e Jacobian not available: use
r(xx +s) = mg(s) = r(xx) + J(xk)s my(s) = r(xx) + Jis

e Find Jy by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)
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DFO for Least-Squares — Basic Framework

min f(x) = %Hr(x)H%, r(x) € R™

xRN
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearize r at x, using Jacobian e Jacobian not available: use
r(xx +s) = my(s) = r(xg) + J(xk)s my(s) = r(xx) + Jis

e Find Jy by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)
1

f(x +5) & mi(s) = 5 llm(s)3
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DFO for Least-Squares — Algorithm

Implement in trust-region method:
1. Build interpolation model

Flxi+5) ~ mils) = o [me(s)]3

2. Minimize model inside trust region

sk = argminmy(s) st |Is|l2 < Ax.
sER”

3. Evaluate f(xx + sk), check sufficient decrease, select xx11 and Agiq

4. Update interpolation set: add xx + s, and move points to ensure good geometry (if needed)
<+ requires calculation of Lagrange polynomials

Implemented in DFO-LS package (Github: numerical algorithms group/dfols)
Also have Py-BOBYQA for general objectives (Github), using quadratic interpolation
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Scalability

e DFO methods are well-known not to scale well (i.e. n large)

— e.g. adversarial examples, weather forecasting/data assimilation, ...

Where is the issue for model-based DFO?
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Scalability

Runtime of DFO-LS on generalized Rosenbrock function:
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Interpolation

Interpolation linear system (for model construction):

(Y1 - Xk)T fi(Yl) - fi(Xk)
Sk,i = , Vi=1,...,m,

(v — x)T ri(yn) — ri(xe)

where Jy has rows gzi.

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)
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Interpolation

Interpolation linear system (for model construction):

! ri(y1) — ri(xk)

8k,i = ) Vi:1,...,m.,

(y1 — xk)

(v — x)T ri(yn) — ri(xe)

where Jy has rows gzi.

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations
required?
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Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n — existing approaches

e Block Coordinate Descent: perturb subset of variables each iteration
[Xu & Yin (2017), Richtarik & Takag (2014)]
e Block Coordinate Gauss-Newton: generalize BCD to least-squares

[Cartis & Fowkes (2018)]
e Probabilistic direct search: random search direction at each iteration
[Gratton, Royer, Vicente & Zhang (2015)]
e Projection DFO methods: optimize over random subspace with existing method
[Qian, Hu & Yu (2016), Wang, Du, Balakrishnan & Singh (2018)]
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Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n
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Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n

Use interpolation set {Xx,y1,...,¥p} for p < n, then solve
)’ ri(y1) — ri(x«)
8k,i = : , YVi=1,...,m.
(¥p — X« ri(yp) — ri(x)

Underdetermined system — take minimal norm solution.

(y1 — xk
)T

Cost = factorization + solve = O(np?) + O(mp?) =~ O(mp?)

Choose p based on computational resources
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Subspace Methods

e Model only varies in subspace Yy 1= span{y1 — Xk, ....¥p — Xk }.

A

r(xx + Qk8) ~ My (8) := r(xk) + Ji8,

where Q, € R"*P is orthonormal basis for ) (from QR factorization).
e Solve trust-region subproblem in subspace
X A NP 1. a2
sk = QiSk, where Sk = argmin Mk(8) = §||mk(s)||2,
[I8]]2<A

e Need a mechanism to explore whole space:
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Subspace Methods

e Model only varies in subspace Yy 1= span{y1 — Xk, ....¥p — Xk }.

r(xx + Qk8) ~ My (8) := r(xk) + Ji8,
where Q, € R"*P is orthonormal basis for ) (from QR factorization).
e Solve trust-region subproblem in subspace

R . C 1. .
sk = QiSk, where Sk = argmin Mk(8) = §||mk(s)||§,
[I8ll2<Ax

e Need a mechanism to explore whole space:

— i.e. need to change ) on each iteration
— Replace interpolation points with random directions (orthogonal to V)
— No free lunch: extra evaluations used to change ) to save on linear algebra
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Changing ),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

Build low-dimensional model and calculate trust-region step §; € RP

Evaluate f(xx + QxSk), accept/reject step, and update Ay (as before)

Add x, + QxS to interpolation set

Remove pgrop > 2 points from the interpolation set

Add random orthogonal directions xx + Axd for d L Vi until we have p + 1 interpolation
points

ok w0
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Changing ),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

Build low-dimensional model and calculate trust-region step §; € RP

Evaluate f(xx + QxSk), accept/reject step, and update Ay (as before)

Add x, + QxS to interpolation set

Remove pgrop > 2 points from the interpolation set

Add random orthogonal directions x, + Axd for d L Yy until we have p + 1 interpolation
points

ok w0

Comments:

® pdrop > 2 ensures new direction(s) d added next iteration = Vi1 # V.
e Linear algebra cost O(mp? + np® + p®) vs. full space method O(mn? + n%)

e Choosing points to remove uses Lagrange polynomials (geometry-aware)
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Choice of pgrop

How to choose p,,,?

e Large change to Yy each iteration (e.g. pgrop = p/10) — explore whole space quickly
e Small change to Y each iteration (e.g. pdrop = 2) — use few evaluations
e Compromise? (pgrop = 2 on successful iterations, p/10 on unsuccessful iterations)
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Numerical Results — high accuracy

Compare DFBGN method to DFO-LS (high accuracy 7 = 107°)
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Performance improves with increasing block size
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Numerical Results — low accuracy

Compare DFBGN method to DFO-LS (low accuracy 7 = 1071)
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DFBGN is more suitable for low accuracy solutions
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Numerical Results — high dimensional problems

High-dimensional test set n ~ 1000 [CUTEst], max 12hrs per problem
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DFBGN outperforms DFO-LS for low accuracy solutions ...

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

16



Timeout Rate

Proportion of problems where solver times out (before usual termination):

Solver Timeout

DFO-LS 93%
DFO-LS (init n/100)  98%

(
DFBGN (p = n/100)  35%
DFBGN (p = n/10) 74%
DFBGN (p = n/2) 82%
DFBGN (p = n) 66%

... because it doesn't time out
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Numerical Results — low budget

Other advantage: DFBGN make progress after p < n evaluations (especially important when n

large)
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General Objective Problems

General objective case is much harder — rely on quadratic interpolation models. Example:

Xk

2 points per subspace direction After step, how to rotate subspace?

e Subspace dimensions decoupled from interpolation directions y; — xj
e Current idea: linear model (p + 1 points) + extra curvature-only points (not recycled)
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Conclusion & Future Work

Conclusions

e Model construction cost a key barrier to scalability of model-based DFO
e Subspace method gives cheaper linear algebra: O(n) vs. O(n?)
e Useful for: low accuracy, small budget, and/or limited computational resources

e Extending to large-scale general objective problems

Future Work

e Sketching for nonlinear least-squares
e Convergence theory

e Exploit Jacobian sparsity
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Choice of pgrop

Choise of pgrop prevents Ay too small too soon (need for convergence)
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