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� L. Roberts & C. W. Royer, Direct search based on probabilistic descent in reduced
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Large-Scale DFO

Interested in unconstrained nonlinear optimization

min
x∈Rn

f (x),

where the objective function f : Rn → R is smooth but derivatives not available.

Specifically looking at the large-scale case where the ambient dimension n is large.

Standard DFO methods are not well-suited to large-scale problems:

� Direct search: cosine measure property for poll step has explicit n dependency

� Model-based: fully linear/quadratic model accuracy properties have explicit n

dependency

� Model-based: per-iteration linear algebra costs scale badly with n (e.g. O(n3) for

linear interpolation)
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Applications

Application 1: Adversarial Example Generation [Alzantot et al., 2019]

� Find perturbations of neural network inputs which are misclassified (min. probability

of correct label/max. probability of desired incorrect label)

� Neural network structure assumed to be unknown = black-box

� Want to test very few examples ≈ expensive

� Useful for copyright protection of artists’ work against generative AI [Shan et al., 2023]

Image from [Goodfellow et al., 2015]
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Applications

Application 2: Fine-Tuning Large Language Models [Malladi et al., 2023]

� Take pre-trained LLM, tweak parameters to be better at a specific task
– e.g. Sentiment analysis: “[input text]. It was...” (good or bad?)

� Very large models = backpropagation expensive & distributed

� DFO method (MeZO) uses 12x less memory than gradient-based methods (FT) but

with comparable performance

Image from [Malladi et al., 2023]
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Direct Search

Prototypical Direct Search Method

� Given xk ∈ Rn and ∆k > 0, choose a set Dk ⊂ Rn of m vectors
� If there exists d k ∈ Dk with f (xk +∆kd k) < f (xk)− 1

2∆
2
k∥d k∥22

– Set xk+1 = xk +∆kd k and ∆k+1 = min(γinc∆k ,∆max)

– Otherwise, set xk+1 = xk and ∆k = γdec∆k

For convergence, need Dk to be κ-descent:

max
d∈Dk

−dT∇f (xk)

∥d∥2 · ∥∇f (xk)∥2
≥ κ ∈ (0, 1]

i.e. there is a vector d making an acute angle with −∇f (xk).

Examples: {±e1, . . . ,±en} with κ = 1/
√
n or {e1, . . . , en,−e} with κ ∼ 1/n.

[Kolda, Lewis & Torczon, 2003; Conn, Scheinberg & Vicente, 2009]
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Complexity Theory

Analyze methods using worst-case complexity: how long before ∥∇f (xk)∥2 ≤ ϵ?

Theorem (Vicente, 2013)

If f sufficiently smooth and bounded below, then we find xk with ∥∇f (xk)∥2 ≤ ϵ after

at most O(mκ−2ϵ−2) evaluations of f .

If Dk = {±e1, . . . ,±en}, this becomes O(n2ϵ−2).

The dependency on n can (only) be reduced via randomization.

Theorem (Gratton et al., 2015)

If Dk is formed by taking m ≥ 2 uniformly random unit vectors, then O(nϵ−2)

function evaluations are required with probability at least 1−O(e−cϵ−2
).

Question: Can we find a systematic way to improve scalability?
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Randomised methods

Challenge

How can DFO methods be made scalable in a systematic way?

The machine learning community typically uses gradient sampling (randomized finite

differencing): take a first-order method with the approximation

∇f (x) ≈
[
f (x + hv)− f (x)

h

]
v ,

for random v (e.g. standard Gaussian). [Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017]

� Get improved complexity, but still requires hyperparameter tuning

� More structure in sampling gives better gradient estimates [Berahas et al., 2022]

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 8



Randomised methods

Challenge

How can DFO methods be made scalable in a systematic way?

The machine learning community typically uses gradient sampling (randomized finite

differencing): take a first-order method with the approximation

∇f (x) ≈
[
f (x + hv)− f (x)

h

]
v ,

for random v (e.g. standard Gaussian). [Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017]

� Get improved complexity, but still requires hyperparameter tuning

� More structure in sampling gives better gradient estimates [Berahas et al., 2022]

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 8



Outline

1. Large-Scale DFO

2. Random Subspace Methods

3. Expected Decrease Analysis

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 9



Randomisation for Dimensionality Reduction

Lemma (Johnson-Lindenstrauss, 1984)

Suppose x1, . . . , xN ∈ Rd and ϵ ∈ (0, 1). Let A ∈ Rp×d be a matrix with

i.i.d. N (0, p−2) entries and p = Ω(log(N)/ϵ). Then with high probability,

(1− ϵ)∥x i − x j∥2 ≤ ∥Ax i − Ax j∥2 ≤ (1 + ϵ)∥x i − x j∥2, ∀i , j = 1, . . . ,N.

� Random projections approximately preserve distances (& inner products, norms, ...)

� Reduced dimension p depends only on # of points N, not the ambient dimension d !

� Other random constructions satisfy J-L Lemma (Haar subsampling, hashing, ...)
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Subspace methods

We use a subspace method: only search in low-dimensional subspaces of Rn

Subspace framework:

� Generate subspace of dimension p ≪ n given by col(Pk) for random Pk ∈ Rn×p

� Choose Dk ⊂ Rp which is κ-descent for PT
k ∇f (xk) ∈ Rp

Choice of subspace: we need to make sure we search in ‘good’ subspaces (where there

is potential to decrease f sufficiently):

P
[
∥PT

k ∇f (xk)∥2 ≥ α∥∇f (xk)∥2
]
≥ 1− δ, for some α > 0.

i.e. if there is still work to do, then we (probably) know this by only inspecting f in the

subspace. Using J-L lemma, choose p = Ω(1) independent of n.
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Subspace DFO — Complexity

Theorem (R. & Royer, 2023)

If f is sufficiently smooth and bounded below and ϵ sufficiently small, then with

probability at least 1−O(e−cϵ−2
) we find xk with ∥∇f (xk)∥2 ≤ ϵ after at most

O(mκ−2ϵ−2) evaluations of f .

Using standard κ-descent choices in the subspaces, this bound matches the O(nϵ−2)

bounds from random direct search, but any choice of Dk is fine (including random unit

vectors).

For example, using Pk random Gaussian and Dk = {±e1, . . . ,±ep}, the evaluation

complexity is O(pnϵ−2).

For J-L to hold, need p = Ω(1), but unclear how to pick p in practice.
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Example Results

Example results for different choices of p.
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Performance profiles: fraction of test problems solved vs. computational work (#

evaluations of f ) — higher is better.
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Theory says p = Ω(1) works, numerical results say p → 1 optimal. Why might this be

true?
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Average-Case Analysis

All the analysis above is worst-case: e.g. “for all objectives f in a given class, get

∥∇f (xk)∥2 ≤ ϵ after at most k = O(ϵ−2) iterations”.

Does this capture realistic behaviour?

� Not for linear programming! Simplex method takes exponentially many iterations

(worst-case) but on average is polynomial time [Spielman & Teng, 2004]

� Gradient descent-type methods designed for (convex) average-case Hessian spectra

can outperform “worst-case optimal” methods [Pedregosa & Scieur, 2020]

� For nonconvex optimization, can do worst-case analysis in different regions of the

domain separately [Curtis & Robinson, 2021]

New here: average-case analysis for nonconvex optimization algorithms.
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Average-Case Analysis

What is a tractable model to analyze average-case behavior for these algorithms?

� Pick random linear function f (x) = vTx

� At xk , pick random p-dimensional subspace

� Follow subspace direct search with 2p directions (i.e. Dk = {±e1, . . . ,±ep})
– Using complete polling

� Look at expected decrease over one iteration as function of relevant dimensions

E(p, n) := E[f (xk)− f (xk+1)]

with expectation over uniformly distributed objective functions (unit vectors v) and

subspaces (Stiefel manifold).
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Average-Case Analysis

Assuming f is linear?

� Simplest starting model: allows us to do the relevant calculations

� Results independent of starting point xk and scale linearly with step size ∆k

� All steps are successful (xk+1 ̸= xk)

� Linear interpolation gives exact gradient (model-based)

Alternative motivation: if ∇f is L-Lipschitz then

f (xk +∆kd k)− f (xk) ≤ ∆k∇f (xk)
Td k +

L

2
∆2

k∥d k∥2

f linear ⇐⇒ L = 0, approximately equivalent to ∆k ≪ 1 (i.e. close to a solution)

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 17



Average-Case Analysis

Assuming f is linear?

� Simplest starting model: allows us to do the relevant calculations

� Results independent of starting point xk and scale linearly with step size ∆k

� All steps are successful (xk+1 ̸= xk)

� Linear interpolation gives exact gradient (model-based)

Alternative motivation: if ∇f is L-Lipschitz then

f (xk +∆kd k)− f (xk) ≤ ∆k∇f (xk)
Td k +

L

2
∆2

k∥d k∥2

f linear ⇐⇒ L = 0, approximately equivalent to ∆k ≪ 1 (i.e. close to a solution)

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 17



Average-Case Analysis

Assuming f is linear?

� Simplest starting model: allows us to do the relevant calculations

� Results independent of starting point xk and scale linearly with step size ∆k

� All steps are successful (xk+1 ̸= xk)

� Linear interpolation gives exact gradient (model-based)

Alternative motivation: if ∇f is L-Lipschitz then

f (xk +∆kd k)− f (xk) ≤ ∆k∇f (xk)
Td k +

L

2
∆2

k∥d k∥2

f linear ⇐⇒ L = 0, approximately equivalent to ∆k ≪ 1 (i.e. close to a solution)

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 17



Average-Case Analysis

Calculating expected decrease leads to an interesting problem:

Lemma

For direct search, E(p, n) = Eg∼Sn−1 [max(|g1|, . . . , |gp|)]

i.e. for a randomly distributed unit vector g ∈ Rn, ∥g∥2 = 1, what is the expected

∞-norm of its first p coordinates?

Theorem (Hare, R. & Royer, 2023)

E(p, n) =
p2p−1

πp/2
·
Γ
(
n
2

)
Γ
(
p+1
2

)
Γ
(
n+1
2

) · I(p)

where I(p) is a (nasty) (p − 1)-dimensional integral.

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 18



Average-Case Analysis

Calculating expected decrease leads to an interesting problem:

Lemma

For direct search, E(p, n) = Eg∼Sn−1 [max(|g1|, . . . , |gp|)]

i.e. for a randomly distributed unit vector g ∈ Rn, ∥g∥2 = 1, what is the expected

∞-norm of its first p coordinates?

Theorem (Hare, R. & Royer, 2023)

E(p, n) =
p2p−1

πp/2
·
Γ
(
n
2

)
Γ
(
p+1
2

)
Γ
(
n+1
2

) · I(p)

where I(p) is a (nasty) (p − 1)-dimensional integral.

Expected decrease — Lindon Roberts (lindon.roberts@sydney.edu.au) 18



Nasty Integral

I(p) =
∫
R

p−1∏
j=1

sinj(φj)

 dφp−1 · · · dφ1

where

R =

(φ1, . . . , φp−1) ∈
[π
4
,
π

2

]
×

p−1∏
j=2

[
arctan

(
j−1∏
k=1

1

sin(φk)

)
,
π

2

]

p I(p)
1 1

2 1/
√
2

3
(
4 arctan(

√
2) + arctan(460

√
2/329)

)
/(8

√
2)

4 arctan(1/(2
√
2))/

√
2
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Nasty Integral

I(p) =
∫
R

p−1∏
j=1

sinj(φj)

 dφp−1 · · · dφ1

where
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Average-Case Analysis

Although I(p) is nasty, we can still get bounds on it...

I(p + 1) <

√
π

2

Γ
(
p+1
2

)
Γ
(p
2 + 1

)I(p) < √
π√
2p

I(p)

...and then look at “expected decrease per objective evaluation”

Theorem (Hare, R. & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(2p), is strictly
decreasing in p for p = 1, . . . , n.

So, the smallest subspace dimension p = 1 gives the best ‘bang for your buck’. This is

exactly what the numerical results said!
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Algorithmic Variations

If we look at minor algorithmic variations of direct search, we get some interesting

results:

� Opportunistic polling: if search in order e1,−e1, e2,−e2, ... then either e1 or

−e1 gives decrease, so on average try 3/2 directions (independent of p)

� This gives better ‘expected decrease per evaluation’ than complete polling with any

p (in particular p = 1)

� Parallel evaluations: if you can do c parallel evaluations, the best choice is

p = c/2 (i.e. smallest p where you can do all poll evaluations simultaneously)
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Model-Based Methods

What about model-based methods?

Random subspace methods for model-based DFO have the same improved complexity

bounds: build low-dimensional fully linear models for s 7→ f (xk + Pks). [Cartis & R., 2023]

Using linear interpolation models, the expected decrease analysis gives

Lemma

For model-based, E(p, n) = Eg∼Sn−1 [
√

g2
1 + · · ·+ g2

p ]

This is a nicer probability question than for direct search, with a nicer answer:

E(p, n) =
Γ
(
n
2

)
· Γ
(
p+1
2

)
Γ
(
n+1
2

)
· Γ
(p
2

) ≈
√
p

√
n

for p, n large
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Model-Based Methods

The main result for model-based methods (with linear interpolation models) is:

Theorem (Hare, R. & Royer, 2023)

For any n, the expected decrease per objective evaluation, E(p, n)/(p + 1), satisfies

E(2, n)
3

>

[
E(1, n)

2
=

E(3, n)
4

]
>

E(4, n)
5

> · · · > E(n, n)
n + 1

So E(p, n)/(p + 1) is strictly decreasing in p for p ≥ 2, not p ≥ 1.

(parallel evaluations: p = c is best, i.e. largest p where you can do all evaluations

simultaneously)
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Conclusions & Future Work

Conclusions

� Randomized projections can be effective for dimensionality reduction

� Novel average-case analysis can give fine-grained understanding of algorithm

performance

Future Work

� Average-case analysis for quadratic objectives

� Impact of noisy objective evaluations
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Example Results (Model-Based)

Example results: model-based (linear interpolation) random subspace methods for

different choices of p.
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