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Variational Regularisation

Many inverse problems can be posed in the form

min
x
D(Ax , y) + αR(x),

where

� x is the quantity we wish to find;

� y is some observed data: y ≈ Ax (usually with noise);

� D(·, ·) measures data fidelity

� R(·) is a regulariser (what types of solutions x do we prefer?);

� α > 0 is a parameter.

Without a regulariser, inverse problems are typically ill-posed.
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Image Denoising

Given a noisy image y , find a denoised image x by solving:

min
x

1

2
‖x − y‖22︸ ︷︷ ︸
D(x ,y)

+ α
∑
j

√
‖∇xj‖22 + ν2

︸ ︷︷ ︸
≈TV(x)

+
ξ

2
‖x‖22

� Smooth and strongly convex optimisation problem

– Iterative methods converge linearly (e.g. gradient descent, FISTA)

� Solution depends on choices of α, ν and ξ:

Example

(α = 1, ν = ξ = 10−3)
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Image Denoising

Given a noisy image y , find a denoised image x by solving:

min
x

1

2
‖x − y‖22︸ ︷︷ ︸
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� Smooth and strongly convex optimisation problem

– Iterative methods converge linearly (e.g. gradient descent, FISTA)

� Solution depends on choices of α, ν and ξ:

Vary ν

(α = 1, ξ = 10−3)
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Image Denoising

Given a noisy image y , find a denoised image x by solving:

min
x

1
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� Smooth and strongly convex optimisation problem

– Iterative methods converge linearly (e.g. gradient descent, FISTA)

� Solution depends on choices of α, ν and ξ:

Vary ξ

(α = 1, ν = 10−3)
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Choosing Parameters

Solution depends on problem parameters (e.g. α, ν and ξ)

Question

How to choose good problem parameters?

� Trial & error

� L-curve criterion

� Bilevel Learning — learn from data
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Bilevel Learning

Suppose we have training data (x1, y1), . . . , (xn, yn) — ground truth and noisy

observations.

Attempt to recover xi from yi by solving inverse problem with parameters θ ∈ Rm:

x̂i (θ) := arg min
x

Φi (x , θ), e.g. Φi (x , θ) = D(Ax , yi ) + θR(x).

Try to find θ by making x̂i (θ) close to xi

min
θ

1

n

n∑
i=1

‖x̂i (θ)− xi‖2 + J (θ),

with optional (smooth) term J (θ) to encourage particular θ (e.g. sparsity).
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Bilevel Optimisation

The bilevel learning problem is:

min
θ

f (θ) :=
1

n

n∑
i=1

‖x̂i (θ)− xi‖2 + J (θ),

s.t. x̂i (θ) := arg min
x

Φi (x , θ), ∀i = 1, . . . , n.

� If Φi are strongly convex in x and sufficiently smooth in x and θ, then x̂i (θ) is

well-defined and continuously differentiable.

� Upper-level problem (minθ f (θ)) is a smooth nonconvex optimisation problem

Problem

Convergent algorithms require exact derivatives of f (θ), but not available (cannot even

compute x̂i (θ) exactly)! [e.g. Kunisch & Pock (2013), Sherry et al. (2019)]
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Bilevel Optimisation with DFO

Problem

Convergent algorithms require exact derivatives of f (θ), but not available (cannot even

compute x̂i (θ) exactly)!

Solution:

� Use algorithms which assume f (θ) is smooth, but do not require exact evaluations

of f (θ)

� Don’t compute (approximate) gradients of f at all: slow in practice

� Use derivative-free optimisation (DFO)

� Useful for objectives which are inexact/noisy or expensive to evaluate
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Model-Based DFO

Several types of DFO, focus on model-based DFO (mimics classical methods):

min
θ

f (θ)

For k = 0, 1, 2, . . .

1. Sample f in a neighbourhood of θk — reuse existing evaluations where possible

2. Build an interpolating function (local model) mk(θ) ≈ f (θ), accurate for θ ≈ θk
3. Minimise mk in a neighbourhood of θk to get θk+1

(commonly based on trust-region methods)

Theorem (Conn, Scheinberg & Vicente)

If interpolation points are close to θk and “well-spaced”, then interpolating model is as

good approximation to f as a Taylor series (up to a constant factor).
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Inexact DFO for Bilevel Optimisation

How to adapt to bilevel learning?

Theorem (Ehrhardt & R., extension of Conn & Vicente (2012))

If interpolation points are close to θk and “well-spaced”, and computed minima of

Φi (xi , θ) are sufficiently close to x̂i (θ), then interpolating model is as good

approximation to f as a Taylor series (up to a constant factor).

� Allow inexact minimisation of Φi early, only ask for high accuracy when needed

� Exploit sum-of-squares structure of f to improve performance [Cartis & R. (2019)]
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Theoretical Guarantees

Algorithm converges with inexact evaluations of x̂i (θ):

Theorem (Ehrhardt & R.)

If f is sufficiently smooth and bounded below, then:

� The inexact bilevel DFO algorithm produces a sequence θk such that ‖∇f (θk)‖ < ε

after at most k = O(ε−2) iterations. That is, lim infk→∞ ‖∇f (θk)‖ = 0.

� All evaluations of x̂i (θ) together require at most O(ε−2| log ε|) iterations (of

gradient descent, FISTA, etc.)

Iteration bound matches known results for model-based DFO and standard trust-region

methods.
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Numerical Results

� Implement inexact algorithm in DFO-LS (state-of-the-art DFO software)

– Github: numerical algorithms group/dfols

� Use gradient descent & FISTA to calculate x̂i (θ) = minx Φi (x , θ)

– Using known Lipschitz and strong convexity constants (depending on θ)

– Allow arbitrary accuracy in x̂i (θ): terminate when ‖∇xΦ‖ sufficiently small

– A priori linear convergence bounds too conservative in practice

� Compare to regular DFO-LS with “fixed accuracy” lower-level solutions (constant
# iterations of GD/FISTA)

– In practice, have to guess appropriate # iterations

� Measure decrease in f (θ) as function of total GD/FISTA iterations
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1D Denoising Problem (learn α, ν and ξ)

With more evaluations of f (θ), the parameter choices give better reconstructions:
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1D Denoising Problem (learn α, ν and ξ)

Final learned parameters give good reconstructions of all training data:
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1D Denoising Problem (learn α, ν and ξ)

Dynamic accuracy is faster than “fixed accuracy” (at least 10x speedup):
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2D Denoising Problem (learn α, ν and ξ)

2D denoising — final learned parameters give good reconstructions...
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2D Denoising Problem (learn α, ν and ξ)

2D denoising — ... and dynamic accuracy is still 10x faster than fixed accuracy:
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Learning MRI Sampling Patterns

MRIs measure a subset of Fourier coefficients of an image: reconstruct using

min
x

1

2
‖F(x)− y‖2S +R(x)

where ‖v‖2S := vTSv and sampling pattern S = diag(s1, . . . , sd) for sj ∈ [0, 1].

� Use same smoothed TV regulariser R(x) (with fixed α, ν and ξ)

� Learn s1, . . . , sd , with parametrisation sj(θ) := θj/(1− θj) [Chen et al. (2014)]

� Measuring each coefficient takes time, so target sparsity: use J (θ) = ‖θ‖1.
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Learning MRI Sampling Patterns

All variants learn 50% sparse sampling patterns:

GD 1,000 - 26 coefficients

GD 10,000 - 32 coefficients

Dynamic GD - 32 coefficients

FISTA 200 - 32 coefficients

FISTA 2,000 - 32 coefficients

Dynamic FISTA - 32 coefficients

Learned sampling patterns (white = active)
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Learning MRI Sampling Patterns

Learned sampling patterns give good reconstructions:
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Learning MRI Sampling Patterns

... and dynamic accuracy is still substantially faster than fixed accuracy:
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Conclusion & Future Work

Conclusions

� Bilevel learning can be used to determine good parameters for inverse problems
� Inexact DFO method gives convergence guarantees with inexact evaluations

– Practical & theoretical algorithms match, don’t guess fixed # GD/FISTA iterations

� Tested on 1D and 2D denoising, learning MRI sampling patterns

� Using dynamic accuracy dramatically reduces computational requirements

See arXiv:2006.12674 for details.

Future work:

� Subsampling algorithms (à la stochastic gradient descent)

� Extend to nonsmooth problems and regularisers J (θ)

� Learn 2D MRI sampling patterns
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