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Variational Regularization

Many inverse problems can be posed in the form

min
x

D(Ax , y) + αR(x),

where we wish to find x given data y ≈ Ax .

Example (image denoising): given a noisy image y , find a denoised image x by solving:

min
x

1

2
∥x − y∥22︸ ︷︷ ︸
D(x ,y)

+ α
∑
j

√
∥∇xj∥22 + ν2

︸ ︷︷ ︸
≈TV(x)

+
ξ

2
∥x∥22

Solution depends on choices of α, ν and ξ:
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Choosing Parameters

Recovered solution depends strongly on problem parameters (e.g. α, ν and ξ)

Question

How to choose good problem parameters?

� Trial & error

� L-curve criterion

� Bilevel learning — data-driven approach
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Bilevel Learning

Suppose we have training data (x1, y1), . . . , (xn, yn) — ground truth and noisy

observations.

Attempt to recover xi from yi by solving inverse problem with parameters θ ∈ Rm:

x̂i (θ) := argmin
x

Φi (x , θ), e.g. Φi (x , θ) = D(Ax , yi ) + θR(x).

Try to find θ by making x̂i (θ) close to xi

min
θ

1

n

n∑
i=1

∥x̂i (θ)− xi∥2 + J (θ),

with optional (smooth) term J (θ) to encourage particular choices of θ.
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Bilevel Optimization

The bilevel learning problem is:

min
θ

f (θ) :=
1

n

n∑
i=1

∥x̂i (θ)− xi∥2 + J (θ),

s.t. x̂i (θ) := argmin
x

Φi (x , θ), ∀i = 1, . . . , n.

� If Φi are strongly convex in x and sufficiently smooth in x and θ, then x̂i (θ) is

well-defined and continuously differentiable.

� Upper-level problem (minθ f (θ)) is a smooth nonconvex optimization problem

Problem

Convergent algorithms require exact derivatives of f (θ), but not available (cannot even

compute x̂i (θ) exactly)! [e.g. Kunisch & Pock (2013), Sherry et al. (2020)]
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Hypergradient

Consider the simple bilevel problem:

min
θ∈Rn

F (θ) := f (x∗(θ)), s.t. x∗(θ) := argmin
y∈Rd

g(y , θ).

Theorem (Inverse Function Theorem)

If g sufficiently smooth (in y and θ) and strongly convex in y , then θ 7→ x∗(θ) is

continuously differentiable with

∇x∗(θ) = −[∂yyg(x
∗(θ), θ)]−1∂y∂θg(x

∗(θ), θ) ∈ Rd×n

This gives us the exact hypergradient

∇F (θ) = −[∂y∂θg(x
∗(θ), θ)]T [∂yyg(x

∗(θ), θ)]−1∇f (x∗(θ))
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Hypergradient Computation

The exact hypergradient is

∇F (θ) = −[∂y∂θg(x
∗(θ), θ)]T [∂yyg(x

∗(θ), θ)]−1∇f (x∗(θ))

� We can never evaluate x∗(θ) exactly (minimizer of g).

� If dimension of y is large, solve linear system inexactly (∂yyg is SPD so use CG)

Inverse Function Theorem (+ CG) approach:

1. Solve lower-level problem to get x∗ε such that ∥x∗ε − x∗(θ)∥ ≤ ε

2. Using CG, find qε,δ such that ∥[∂yyg(x∗ε , θ)]qε,δ −∇f (x∗ε )∥ ≤ δ.

3. Return hypergradient estimate hε,δ := −[∂y∂θg(x
∗
ε , θ)]

Tqε,δ.

Theorem (Pedregosa (2016); Zucchet & Sacramento (2022))

If ε is sufficiently small, then ∥hε,δ −∇F (θ)∥ = O(ε+ δ).
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Automatic Differentiation

An alternative approach for calculating ∇F (θ) is to use automatic differentiation (AD).

Reverse-mode AD—aka backpropagation—uses the chain rule to build up (symbolic)

gradients given source code for function evaluation.

Example: calculate ∇f for f (x1, x2) = sin(x1)/x2.

def f(x1,x2): # 1. Forward pass (evaluate f and save adjoint variables)

x3 = sin(x1); dx3_dx1 = cos(x1);

x4 = x3 / x2; dx4_dx3 = 1/x2; dx4_dx2 = - x3 / x2**2;

return x4

def gradf(x1,x2): # 2. Backward pass (compute gradient)

dx1, dx2, dx3 = 0; dx4 = 1 # dxi = df/dxi

dx2 += dx4 * dx4_dx2; dx3 += dx4 * dx4_dx3; # process x4(x2, x3)

dx1 += dx3 * dx3_dx1; # process x3(x1)

return dx1, dx2
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Iterative AD

Given some algorithm for approximating x∗(θ) := argminy∈Rd g(y , θ), we can apply AD

to that algorithm. [Christianson (1994)]

For example, run K iterations of gradient descent with fixed stepsize starting from x (0):

x (k+1) = x (k) − α∂yg(x
(k), θ), k = 0, . . . ,K − 1.

Our estimate is x (K) ≈ x∗(θ).

Reverse mode AD on this iteration then gives:

� Initialize x̃ (0) := ∇f (x (K)) and h(0) := 0 ∈ Rn.

� For k = 0, . . . ,K − 1, iterate (backward pass)

h(k+1) = h(k) − α[∂y∂θg(x
(K−k−1), θ)]T x̃ (K−k),

x̃ (K−k−1) = [∂yyg(x
(K−k−1), θ)]x̃ (K−k).

Final hypergradient is h(K).
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Inexact AD

Since we are solving a smooth, strongly convex problem, if α is small enough then

∥x (K) − x∗(θ)∥ ≤ λK∥x (0) − x∗(θ)∥ for some λ < 1.

Theorem (Mehmood & Ochs (2020))

The reverse mode AD hypergradient h(K) satisfies ∥h(K) −∇FK∥ = O(KλK ), where

∇FK := −[∂y∂θg(x
(K), θ)]T [∂yyg(x

(K), θ)]−1∇f (x (K)).

This can be improved using inexact AD: evaluate all second derivatives at the best

estimate x (K).

Theorem (Mehmood & Ochs (2020))

The inexact AD hypergradient h(K) satisfies ∥h(K) −∇FK∥ = O(λK ).

Note: Similar results hold using heavy ball (Polyak) momentum instead of GD.
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Unified Perspective

Questions

Two questions of interest:

1. What is the relationship (if any) between inexact AD and IFT+CG?

2. Can we get computable error bounds for these methods?

Motivation for #2: algorithms for smooth nonconvex problems with inexact gradients

typically require conditions such as

� ∥hk −∇F (θk)∥ ≤ C∥hk∥ for some (fixed) C < 1 [Berahas et al. (2021)]

� ∥hk −∇F (θk)∥ ≤ Ck , for some (dynamically updated) Ck > 0 [Cao et al. (2022)]

We need some way to verify these (and solve to higher accuracy if not satisfied).
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Key Insight

Inexact AD: given x (K) ≈ x∗(θ) from K iterations of GD, iterate

h(k+1) = h(k) − α[∂y∂θg(x
(K), θ)]T x̃ (K−k),

x̃ (K−k−1) = [∂yyg(x
(K), θ)]x̃ (K−k).

for k = 0, . . . ,K − 1, with x̃ (0) := ∇f (x (K)) and h(0) := 0 ∈ Rn.

Rearrange to reduce Jacobian-vector products (and re-index x̃)

q(k+1) = q(k) + αx̃ (k),

x̃ (k+1) = x̃ (k) − α[∂yyg(x
(K), θ)]x̃ (k),

with q(0) = 0. Final estimate is h(K) = −[∂y∂θg(x
(K), θ)]Tq(K).

This looks like a GD iteration!
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IFT vs. inexact AD

Theorem (Ehrhardt & R. (2022))

Inexact AD is exactly equivalent to using K iterations of GD with stepsize α to solve

the symmetric positive definite linear system

[∂yyg(x
(K), θ)]q = ∇f (x (K)),

starting from q(0) = 0, and returning −[∂y∂θg(x
(K), θ)]Tq(K).

Note: if A is SPD, then solving Ax = b is the same as minmizing the strongly convex

function Q(x) := 1
2x

TAx − bT x .

So inexact AD is exactly an IFT method in disguise!

An equivalent result holds for inexact AD using heavy ball momentum.
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Unified Framework

This motivates a general hypergradient approximation framework (based on IFT+CG):

1. Solve the lower-level problem to get x∗ε such that ∥x∗ε − x∗∥ ≤ ε

2. Find qε,δ such that ∥[∂yyg(x∗ε , θ)]qε,δ −∇f (x∗ε )∥ ≤ δ.

3. Return hypergradient estimate hε,δ := −[∂y∂θg(x
∗
ε , θ)]

Tqε,δ.

This is IFT+CG, but any algorithm can be used in the first two steps (and they don’t

have to be the same).

Covers IFT+CG and inexact AD methods (and AD methods don’t have to be exactly K

iterations in both passes).

Theorem (Ehrhardt & R. (2022))

We have ∥hε,δ −∇F (θ)∥ = O(ε+ δ + ε2 + δε). Holds for any ε > 0 (new!).
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Error Bounds

Interested in two types of error bounds:

� A priori: based on known linear convergence rates (e.g. λk)

� A posteriori: based on measured progress (e.g. ∥∂yg(x∗ε , θ)∥)

A priori bounds are O(ε+ δ + ε2 + δε) with (for k iterations of linear solve):

(IFT+CG) δ ≤ C1λ
k
CG,

(AD+GD) δ ≤ C2λ
k
GD,

(AD+HB) δ ≤ C3(λHB + γ)k .

Best λ values (depending on α, momentum): λCG = λ∗
HB ≪ λ∗

GD .

(AD+HB) bound holds for any γ > 0 but no explicit form for C3(γ).
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Error Bounds

A posteriori bounds look like:

� Use Gε := ∥∂yg(x∗ε , θ)∥ to measure accuracy of lower-level solve.

� Use current residual Rε,δ := ∥[∂yyg(x∗ε , θ)]qε,δ −∇f (x∗ε )∥ to estimate accuracy of

hypergradient.

� Overall bound is of the form

∥hε,δ −∇F (θ)∥ ≤ O(Rε,δ + Gε + G 2
ε ),

where all constants are computable (i.e. only depend on xε,δ, qε,δ and various

Lipschitz constants, not x∗).
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Outline

1. Bilevel learning

2. Hypergradient algorithms

3. Unified perspective

4. Numerical results

Inexact Hypergradients — Lindon Roberts (lindon.roberts@sydney.edu.au) 19



Simple Problem

Simple least-squares test problem: [Li et al. (2022)]

min
θ∈Rn

F (θ) := ||Ax∗(θ)− b||22 s.t. x∗(θ) := argmin
y∈Rd

||Cθ + Dy − e||22.

(analytic expression for x∗(θ), problem constants easy to evaluate)
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Data Hypercleaning

Data Hypercleaning: [Yang et al. (2021)]

� Perform logistic regression on MNIST, but some training labels are corrupted (10%)

� Learn weights for each training example

min
θ

1

Ntest

∑
i

ℓ(w∗(θ), x testi , y testi ),

s.t. w∗(θ) = argmin
w

1

Ntrain

∑
j

σ(θj) · ℓ(w , x trainj , y trainj ) + α∥w∥2.

Question: do better hypergradient methods yield better optimization?

Work: 1 lower-level iter ≈ 1 AD iter (lower-level gradient vs. Hessian-vector product)
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Data Hypercleaning

Data Hypercleaning Results:
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Better AD method gives better optimization results (c.f. stochastic gradients).
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Conclusions & Future Work

Conclusions

� Can compute hypergradients using either IFT or AD methods

– Best AD methods are actually a special case of IFT

� Unified analysis and bounds with flexible choice of solvers

� A posteriori bounds computable and more accurate

� Good hypergradient method similarly important as good lower-level solver

Future Work

� Incorporate into rigorous bilevel optimization algorithm

� More sophisticated problems; e.g. neural network regularizers, learning MRI sample

patterns
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