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Derivative-Free Optimization

min
x∈Rn

f (x)

� Objective f nonlinear, nonconvex, structure unknown

� Standard methods locally approximate f by quadratic models (e.g. Taylor series)

� How to calculate derivatives of f to build model?

– Write code by hand

– Finite differences

– Algorithmic differentiation (backpropagation)

� Difficulties when function evaluation is black-box, noisy and/or expensive

� Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

– Applications in finance, climate, engineering, machine learning, ...
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Model-Based DFO — Basic Ideas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

� Classically (e.g. Newton’s method),

f (xk + s) ≈ mk(s) = f (xk) +∇f (xk)T s +
1

2
s
T∇2f (xk)s

� Instead, approximate

f (xk + s) ≈ mk(s) = f (xk) + gk
T
s +

1

2
s
THks

and find gk and Hk without using derivatives

� How? Interpolate f over a set of points

� Geometry of points good =⇒ interpolation model Taylor-accurate =⇒ convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Model-Based DFO — Basic Ideas

Implement in trust-region method:

1. Build interpolation model mk(s)

2. Minimize model inside trust region

sk = arg min
s∈Rn

mk(s) s.t. ‖s‖2 ≤ ∆k .

3. Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)

4. Update interpolation set: add xk + sk to interpolation set

5. If needed, ensure new interpolation set is ‘good’
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Model-Based DFO — Theory

Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?
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Model-Based DFO — Theory

Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

An interpolation model f (xk + s) ≈ mk(s) is fully linear if

|f (xk + s)−mk(s)| ≤ κ∆2
k ,

‖∇f (xk + s)−∇mk(s)‖2 ≤ κ∆k ,

for all ‖s‖2 ≤ ∆k (c.f. linear Taylor series).
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Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

An interpolation set is Λ-poised if

max
t

max
‖s‖2≤∆k

|`t(xk + s)| ≤ Λ,

where `t is the t-th Lagrange polynomial for the interpolation set (i.e. `t(y s) = δs,t).

Theorem

If the interpolation set is Λ-poised and contained in B(xk ,∆k), then the corresponding

interpolation model is fully linear with κ = O(Λ). (+ dependencies on n, f )
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Model-Based DFO — Theory

Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

Convergence & worst-case complexity for nonconvex functions (match derivative-based

trust-region methods).

Theorem

If f has Lipschitz continuous gradient and is bounded below, then we have

limk→∞ ‖∇f (xk)‖2 = 0. Furthermore, we achieve ‖∇f (xk)‖2 ≤ ε for the first time

after at most O(ε−2) iterations. (+ dependencies on κ, f )
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Convex Constraints

Now consider the setting

min
x∈Rn

f (x) subject to x ∈ C,

where C ⊆ Rn is a closed, convex set with nonempty interior.

Require:

� Strictly feasible algorithm: never evaluate f at points outside C;

� Access to C is only through a (cheap) projection operator

Examples: Rn, bound constraints, half-plane, Euclidean ball, ...
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Convex Constraints

Existing work:

� Unrelaxable constraints: only for simple cases, no convergence theory
– Bounds [Powell, 2009; Wild, 2009; Gratton et al., 2011]

– Linear inequalities [Gumma, Hashim & Ali, 2014; Powell, 2015]

� Convex constraints with projections (our setting): [Conejo et al., 2013]

– Convergence, no complexity

– Assume models always fully linear (but how to achieve?)

� Derivative-based complexity analysis [Cartis, Gould & Toint, 2012]

Key Problem

Model-based methods are more challenging to design in the presence of unrelaxable
constraints because enforcing guarantees of model quality... can be difficult. For a
fixed value of κ..., it may be impossible to obtain a fully linear model using only
feasible points. [Larson, Menickelly & Wild, 2019]
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Convex Constraints — The Basic Problem

Why can’t we achieve fully linear models using only feasible points?

x1

x2

1−1

1

−1

ε

−ε

Use C = {(x1, x2) ∈ R2 : |x2| ≤ ε} with interpolation points (0, 0), (1, 0) and (0, ε). Get

Λ = O(ε−1) =⇒ large interpolation errors. Cannot be improved using feasible points.

Note: Λ = O(1) if only consider |`t(xk + s)| inside the feasible region!
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Convex Constraints — Geometry

Old definition of Λ-poised set:

max
t

max
‖s‖2≤∆k

|`t(xk + s)| ≤ Λ.

Gives very large values of Λ if all interpolation points must be feasible.

New definition:

max
t

max
xk+s∈C
‖s‖2≤∆k

|`t(xk + s)| ≤ Λ.

� Only care about Lagrange polynomial size inside the feasible region (since the

algorithm will never look elsewhere).

� Gives smaller values of Λ — better interpolation error?
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Convex Constraints — Geometry

Fully linear: for all ‖s‖2 ≤ ∆k

|f (xk + s)−mk(s)| ≤ κ∆2
k ,

‖∇f (xk + s)−∇mk(s)‖2 ≤ κ∆k .

This is stronger than we really need!

New definition adapted to C:

max
xk+s∈C
‖s‖2≤∆k

|f (xk + s)−mk(s)| ≤ κ∆2
k ,

max
xk+s∈C
‖s‖2≤1

|(∇f (xk)−∇mk(0))T s| ≤ κ∆k .

Theorem (Hough & R., 2021)

If the interpolation set is contained in B(xk ,∆k) ∩ C and [new] Λ-poised, then the

corresponding linear interpolation model is [new] fully linear with κ = O(Λ).
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Convex Constraints — Algorithm

Algorithm almost identical to unconstrained case:

1. Build interpolation model mk(s)

2. Minimize model inside trust region

sk = arg min
s∈Rn

mk(s) s.t. ‖s‖2 ≤ ∆k and xk + s ∈ C.

3. Accept/reject step and adjust ∆k based on quality of new point f (xk + sk)

xk+1 =

{
xk + sk , if sufficient decrease, ←− (maybe increase ∆k)

xk , otherwise. ←− (decrease ∆k)

4. Update interpolation set: add xk + sk to interpolation set

5. If needed, ensure new interpolation set is [new] Λ-poised

Convex-Constrained DFO — Lindon Roberts (lindon.roberts@anu.edu.au) 12



Convex Constraints — Convergence/Complexity

For convergence results, first need to ask

Question

What is a suitable measure of stationarity?

πf (x) :=

∣∣∣∣∣∣ min
x+s∈C
‖s‖2≤1

∇f (x)T s

∣∣∣∣∣∣
Useful properties: [Conn, Gould & Toint, 2000]

� πf (x) ≥ 0 for all x

� πf (x∗) = 0 if and only if x∗ is a KKT point

� If C = Rn, then πf (x) = ‖∇f (x)‖2

� πf (x) is Lipschitz continuous in x (if ∇f is Lipschitz) [Cartis, Gould & Toint, 2012]

� If mk is [new] fully linear, then |πf (xk)− πmk (xk)| ≤ κ∆k [Hough & R., 2021]
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Convex Constraints — Convergence/Complexity

We can match the unconstrained convergence & complexity results:

Theorem (Hough & R., 2021)

If f has Lipschitz continuous gradient and is bounded below, then we have

limk→∞ π
f (xk) = 0. Furthermore, we achieve πf (xk) ≤ ε for the first time after at

most O(ε−2) iterations.

Requires the existence of procedures to:

� Verify if a model is fully linear

� If a model is not fully linear, change the interpolation set to make it fully linear

For our new definition of Λ-poisedness, can use (almost) the same approach as for

unconstrained case.
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DFO for Least-Squares — Basic Framework

min
x∈Rn

f (x) =
1

2
‖r(x)‖2

2, r(x) ∈ Rm

Classical Gauss-Newton Derivative-Free Gauss-Newton

� Linearize r at xk using Jacobian

r(xk +s) ≈ mk(s) = r(xk)+J(xk)s

� Jacobian not available: use

mk(s) = r(xk) + Jks

� Find Jk using linear interpolation [Cartis

& R., 2019]

In both cases, get a local quadratic model

f (xk + s) ≈ mk(s) =
1

2
‖mk(s)‖2

2

New: Linear interpolation with feasible points gives fully linear quadratic models
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Least-Squares Implementation

New changes implemented in state-of-the-art solver DFO-LS [Cartis et al., 2019]

� Use FISTA to compute search direction (subject to feasibility & trust-region

constraint) + Dykstra’s algorithm to project onto B(xk ,∆k) ∩ C
� Github: numerical algorithms group/dfols

Test on collection of 58 low-dimensional least-squares problems with box/ball/halfspace

constraints.

Few codes to test against (none using the least-squares structure)!.

� NOMAD: direct search DFO, model constraints using extreme barrier

(i.e. f (x) = +∞ if x /∈ C) [Le Digabel, 2011]

� COBYLA: model-based DFO with (derivative-free) inequality constraints

[Powell, 1994]
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Numerical Results

Performance profiles at different accuracy levels
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Conclusions & Future Work

Conclusions

� General model-based DFO method for convex-constrained problems

� Match/generalize existing convergence & complexity results

� Developed comprehensive new theory of Λ-poisedness/full linearity

– Currently only for (composite) linear interpolation

� New software for least-squares problems

Future Work

� Second-order theory

� Generalize interpolation theory to quadratic interpolation

[arXiv:2111.05443, Github: numerical algorithms group/dfols]
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