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Derivative-Free Optimization

)

e Objective f nonlinear, nonconvex, structure unknown
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Derivative-Free Optimization

)

e Objective f nonlinear, nonconvex, structure unknown
e Standard methods locally approximate f by quadratic models (e.g. Taylor series)

e How to calculate derivatives of f to build model?

— Write code by hand
— Finite differences
— Algorithmic differentiation (backpropagation)
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Derivative-Free Optimization

)

Objective f nonlinear, nonconvex, structure unknown

Standard methods locally approximate f by quadratic models (e.g. Taylor series)
How to calculate derivatives of f to build model?

— Write code by hand
— Finite differences

— Algorithmic differentiation (backpropagation)

Difficulties when function evaluation is black-box, noisy and/or expensive

Alternative — derivative-free optimization (DFO) [aka “zero-order methods"|

— Applications in finance, climate, engineering, machine learning, ...
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Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

e Classically (e.g. Newton's method),

1
f(Xk + S) I~ mk(s) = f(Xk) + Vf(xk)Ts + ESTV2f(Xk)$
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Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...
e Classically (e.g. Newton's method),
T L
f(Xk + S) ~ mk(s) = f(Xk) + Vf(xk) s+ 55 \Y% f(Xk)S
e Instead, approximate
T L 7
f(xk+s)~m(s)="r(xx)+8x s+ =s' Hks

2
and find g, and Hj without using derivatives
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Model-Based DFO — Basic ldeas

Many approaches: model-based, gradient sampling, direct search, Bayesian, ...

e Classically (e.g. Newton's method),
Te o L T2
f(Xk + S) ~ mk(s) = f(Xk) + Vf(xk) s+ 55 \Y% f(Xk)S
e Instead, approximate

1
F(xk+ )~ m(s) =Ff(xx) + g s+ 5sTHks

and find g, and Hj without using derivatives
e How? Interpolate f over a set of points
e Geometry of points good = interpolation model Taylor-accurate = convergence

[Powell, 2003; Conn, Scheinberg & Vicente, 2009]
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Model-Based DFO — Basic ldeas

Implement in trust-region method:
1. Build interpolation model m(s)

2. Minimize model inside trust region

sk =argminmg(s) s.t. ||s]2 < Ax.
scR"

3. Accept/reject step and adjust Ay based on quality of new point f(xx + sk)

X, + Sy, if sufficient decrease, +— (maybe increase Ay)
Xk+1 = .
* Xk, otherwise. <— (decrease Ay)

4. Update interpolation set: add x, + s to interpolation set

5. If needed, ensure new interpolation set is ‘good’
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Model-Based DFO — Theory

Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?
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Model-Based DFO — Theory

Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

An interpolation model f(x, + s) ~ my(s) is fully linear if

‘f(Xk + S) — mk(S)‘ < HA%(,
HVf(Xk + S) — mG(s)Hg < KA,

for all ||s|l2 < Ak (c.f. linear Taylor series).
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Model-Based DFO — Theory

Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]
An interpolation set is A-poised if

max max |li(xk +s)] <A,
t slla<Ax

where /; is the t-th Lagrange polynomial for the interpolation set (i.e. l¢(y,) = 0st)-

If the interpolation set is A-poised and contained in B(x,Ay), then the corresponding
interpolation model is fully linear with k = O(N). (+ dependencies on n, f)
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Model-Based DFO — Theory

Theoretical Questions

1. What is a ‘good’ interpolation set/model?

2. What convergence/complexity guarantees do we have?

[Conn, Scheinberg & Vicente, 2009]

Convergence & worst-case complexity for nonconvex functions (match derivative-based
trust-region methods).

Theorem

If f has Lipschitz continuous gradient and is bounded below, then we have
limk—oo |VF(xk)|l2 = 0. Furthermore, we achieve ||V f(x)]

2 < € for the first time
after at most O(e~2) iterations. (+ dependencies on k, f)
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Convex Constraints

Now consider the setting

min f(x) subject to x € C,
xcRn

where C C R" is a closed, convex set with nonempty interior.
Require:

e Strictly feasible algorithm: never evaluate f at points outside C;

e Access to C is only through a (cheap) projection operator

Examples: R, bound constraints, half-plane, Euclidean ball, ...
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Convex Constraints

Existing work:

e Unrelaxable constraints: only for simple cases, no convergence theory

— Bounds [Powell, 2009; Wild, 2009; Gratton et al., 2011]
— Linear inequalities [Gumma, Hashim & Ali, 2014; Powell, 2015]
e Convex constraints with projections (our setting): [Conejo et al., 2013]

— Convergence, no complexity
— Assume models always fully linear (but how to achieve?)
e Derivative-based complexity analysis [Cartis, Gould & Toint, 2012]
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Convex Constraints

Existing work:

e Unrelaxable constraints: only for simple cases, no convergence theory

— Bounds [Powell, 2009; Wild, 2009; Gratton et al., 2011]
— Linear inequalities [Gumma, Hashim & Ali, 2014; Powell, 2015]
e Convex constraints with projections (our setting): [Conejo et al., 2013]

— Convergence, no complexity
— Assume models always fully linear (but how to achieve?)
e Derivative-based complexity analysis [Cartis, Gould & Toint, 2012]

Key Problem

Model-based methods are more challenging to design in the presence of unrelaxable
constraints because enforcing guarantees of model quality... can be difficult. For a
fixed value of k..., it may be impossible to obtain a fully linear model using only
feasible points. [Larson, Menickelly & Wild, 2019]
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Convex Constraints — The Basic Problem

Why can’t we achieve fully linear models using only feasible points?

X2

1

L4
=

X1

Use C = {(x1,x) € R? : |xo| < ¢} with interpolation points (0,0), (1,0) and (0, ¢). Get
A = O(e~') = large interpolation errors. Cannot be improved using feasible points.
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Convex Constraints — The Basic Problem

Why can’t we achieve fully linear models using only feasible points?

X2

X1

L4
=

Use C = {(x1,x) € R? : |xo| < ¢} with interpolation points (0,0), (1,0) and (0, ¢). Get
A = O(e~') = large interpolation errors. Cannot be improved using feasible points.

Note: A = O(1) if only consider |/+(xx + s)| inside the feasible region!
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Convex Constraints — Geometry

Old definition of A-poised set:

max max |l¢(xx + )| <A
b [Islla<Ax

Gives very large values of A if all interpolation points must be feasible.
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Convex Constraints — Geometry

Old definition of A-poised set:

max max |l¢(xx + )| <A
b [Islla<Ax

Gives very large values of A if all interpolation points must be feasible.

New definition:

max max |li(xk +s)| < A.
t  x,+seC
Isll2<Ax

e Only care about Lagrange polynomial size inside the feasible region (since the
algorithm will never look elsewhere).

e Gives smaller values of A — better interpolation error?
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Convex Constraints — Geometry

Fully linear: for all ||s]j2 < Ak
Pk + 5) — mi(s)] < wAZ,
HVf(Xk + S) mG( )H2 < kKA.

This is stronger than we really need!
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Convex Constraints — Geometry

Fully linear: for all ||s]j2 < Ak
1f(xi +8) — my(s)] < kAZ,
IVFf(xk+s) — Vmy(s)|l2 < kAg.
This is stronger than we really need! New definition adapted to C:

f s) — mu(s)| < kA2
xmiéc\ (xk +8) — my(s)| < KA,
Isll2<Ak

max_|(VF(xx) — Vmi(0))7s| < k.
x+seC
[Is]l2<1

Theorem (Hough & R., 2021)

If the interpolation set is contained in B(xx, Ax) NC and [new] N-poised, then the
corresponding linear interpolation model is [new] fully linear with k = O(N).
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Convex Constraints — Algorithm

Algorithm almost identical to unconstrained case:

1. Build interpolation model my(s)

2. Minimize model inside trust region

sk = argminmy(s) s.t. |[[s]2 <Ax and x,x+s€C.
scRn

3. Accept/reject step and adjust Ay based on quality of new point f(xyx + sk)

Xy, + s, if sufficient decrease, <— (maybe increase Ay)
Xk+1 = .
* Xk, otherwise. <— (decrease Ay)

4. Update interpolation set: add x, + s to interpolation set

5. If needed, ensure new interpolation set is [new] A-poised
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Convex Constraints — Convergence/Complexity

For convergence results, first need to ask

What is a suitable measure of stationarity?
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Convex Constraints — Convergence/Complexity

For convergence results, first need to ask

What is a suitable measure of stationarity?

f L : T
7' (x) = szIQCVf(X) s
lIsll2<1
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Convex Constraints — Convergence/Complexity

For convergence results, first need to ask

What is a suitable measure of stationarity?

f : T
' (x):=| min Vf(x)'s
( ) x+seC ( )
lIsll2<1
Useful properties:

e 7f(x) >0 for all x

e 7f(x*) =0 if and only if x* is a KKT point

e If C =R", then 77(x) = | VF(x)|2

e 7f(x) is Lipschitz continuous in x (if Vf is Lipschitz)

[Conn, Gould & Toint, 2000]

[Cartis, Gould & Toint, 2012]
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Convex Constraints — Convergence/Complexity

For convergence results, first need to ask

What is a suitable measure of stationarity?

f L : T
7' (x) = szIQCVf(X) s
lIsll2<1

Useful properties: [Conn, Gould & Toint, 2000]

7f(x) >0 for all x

7 (x*) = 0 if and only if x* is a KKT point

e If C =R", then 77(x) = | VF(x)|2

7f(x) is Lipschitz continuous in x (if V£ is Lipschitz)  [Cartis, Gould & Toint, 2012]
If my is [new] fully linear, then |f(x)) — 7™ (xx)| < KA, [Hough & R., 2021]
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Convex Constraints — Convergence/Complexity

We can match the unconstrained convergence & complexity results:

Theorem (Hough & R., 2021)

If f has Lipschitz continuous gradient and is bounded below, then we have
limk o0 7 (xx) = 0. Furthermore, we achieve ©*(x) < € for the first time after at
most O(e~?) iterations.
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Convex Constraints — Convergence/Complexity

We can match the unconstrained convergence & complexity results:

Theorem (Hough & R., 2021)

If f has Lipschitz continuous gradient and is bounded below, then we have
limk o0 7 (xx) = 0. Furthermore, we achieve ©*(x) < € for the first time after at
most O(e~?) iterations.

Requires the existence of procedures to:

e Verify if a model is fully linear

e If a model is not fully linear, change the interpolation set to make it fully linear
For our new definition of A-poisedness, can use (almost) the same approach as for
unconstrained case.
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DFO for Least-Squares — Basic Framework

. 1 ”
min f(x) = SIr()IE  r(x)eR

Classical Gauss-Newton Derivative-Free Gauss-Newton
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DFO for Least-Squares — Basic Framework

. 1 ”
min f(x) = SIr()IE  r(x)eR

Classical Gauss-Newton Derivative-Free Gauss-Newton

e Linearize r at x4 using Jacobian

r(xx+s) ~ my(s) = r(xx)+J(xk)s
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DFO for Least-Squares — Basic Framework

min F(x) = 5 [r(G)IB, r(x) € R

x€ERN
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearize r at xj using Jacobian e Jacobian not available: use
r(xx+s) ~ my(s) = r(xx)+J(xk)s my(s) = r(xg) + Jis

e Find Ji using linear interpolation [Cartis
& R., 2019]
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DFO for Least-Squares — Basic Framework

min F(x) = 5 [r(G)IB, r(x) € R

x€ERN
Classical Gauss-Newton Derivative-Free Gauss-Newton
e Linearize r at xj using Jacobian e Jacobian not available: use
r(xx+s) ~ my(s) = r(xx)+J(xk)s my(s) = r(xg) + Jis

e Find Ji using linear interpolation [Cartis

& R., 2019]
In both cases, get a local quadratic model
1
f(xi+8) = m(s) = §Hmk(5)H§

New: Linear interpolation with feasible points gives fully linear quadratic models
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Least-Squares Implementation

New changes implemented in state-of-the-art solver DFO-LS [Cartis et al., 2019]

e Use FISTA to compute search direction (subject to feasibility & trust-region
constraint) + Dykstra's algorithm to project onto B(xx, Ax) NC
e Github: numerical algorithms group/dfols

Test on collection of 58 low-dimensional least-squares problems with box/ball/halfspace

constraints.
Few codes to test against (none using the least-squares structure)!.

e NOMAD: direct search DFO, model constraints using extreme barrier

(i.e. f(x) =+o0 if x ¢ C) [Le Digabel, 2011]
e COBYLA: model-based DFO with (derivative-free) inequality constraints
[Powell, 1994]
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Numerical Results

Performance profiles at different accuracy levels

1.0

1.0

——
CDFO-LS =T _.— CDFO-LS
- COBYLA = _=m"7 === COBYLA
_ += NOMAD J— - —+- NOMAD
0.0 F===="7 : : . . 0.0 === . . .
1 2 4 8 16 32 1 2 4 8 16 32
Budget / min budget of any solver Budget / min budget of any solver

Low accuracy, T = 107} High accuracy, T = 107°

[% problems solved vs. # objective evals; higher is better]
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Conclusions & Future Work

Conclusions

e General model-based DFO method for convex-constrained problems

e Match/generalize existing convergence & complexity results
e Developed comprehensive new theory of A-poisedness/full linearity
— Currently only for (composite) linear interpolation

o New software for least-squares problems
Future Work

e Second-order theory

o Generalize interpolation theory to quadratic interpolation

[arXiv:2111.05443, Github: numerical algorithms group/dfols]
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