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Derivative-Free Optimization
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= Objective f nonlinear, nonconvex, structure unknown
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Derivative-Free Optimization

£ )

= Objective f nonlinear, nonconvex, structure unknown

= Standard methods locally approximate f by quadratic models (e.g. Taylor series)
= How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation [aka backpropagation]
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Derivative-Free Optimization

£ )

= Objective f nonlinear, nonconvex, structure unknown

= Standard methods locally approximate f by quadratic models (e.g. Taylor series)
= How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation [aka backpropagation]
= Difficulties when function evaluation is

— ‘Black-box’

— Noisy

— Computationally expensive

= Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

— Applications in finance, climate, image analysis, data science, engineering, ...
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Model-Based DFO — Basic ldeas

Many approaches: model-based, direct search, Nelder-Mead, ...

= Classically (e.g. Newton's method),

1
F(xk +5) = mi(s) = f(xk) + VF(xe) s + ESTV2f(xk)s
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Model-Based DFO — Basic ldeas

Many approaches: model-based, direct search, Nelder-Mead, ...

= Classically (e.g. Newton's method),

1
F(xk +5) = mi(s) = f(xk) + VF(xe) s + ESTV2f(xk)s

= |nstead, approximate

1
f(xk +5) = m(s) = f(xx) +g s+ ESTHks

= Find gx and Hy without using derivatives: interpolate f over a set of points
= Geometry of points gopod = interpolation model accurate = convergence

[Conn, Powell, Scheinberg, Vicente, ...]
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DFO for Least-S es — Basic Framework

H _ 1 2 m
min f(x) =3llrllz,  rlx) R

Classical Gauss-Newton Derivative-Free Gauss-Newton
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DFO for Least-S es — Basic Framework

1
in f(x) == 2, €R™
min £() = 5 IrG)B o)
Classical Gauss-Newton Derivative-Free Gauss-Newton

= Linearize r at x4 using Jacobian

r(x + ) = Mi(s) = r(xk) + J(x)s
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DFO for Least-Squares — Basic Framework

min f(x) = 1||r(x)||§, r(x) e R™

xERn 2
Classical Gauss-Newton Derivative-Free Gauss-Newton
= Linearize r at x4 using Jacobian = Jacobian not available: use
F(Xk + S) ~ Mk(S) = I‘(Xk) + J(Xk)S Mk(S) = r(xk) + Jis

= Find Jx by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)
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DFO for Least-Squares — Basic Framework

min f(x) = 1||r(x)||§, r(x) e R™

xERn 2
Classical Gauss-Newton Derivative-Free Gauss-Newton
= Linearize r at x4 using Jacobian = Jacobian not available: use
F(Xk + S) ~ Mk(S) = I‘(Xk) + J(Xk)S Mk(S) = r(xk) + Jis

= Find Jx by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

o+ 5) ~ mil(s) = 5 IM(9)]3
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DFO for Least-Squares — Algorithm

Implement in trust-region method:

1. Build interpolation model
1
Fa + 5) = mi(s) i= 5 [IMk(s)Il3.
2. Minimize model inside trust region

sk = argmin my(s) st |[s]l2 < Ag.
sER"

3. Evaluate f(xx + sk), check sufficient decrease, select xx+1 and Agyq

4. Update interpolation set: add xx + s, and move points to ensure good geometry (if needed)
<+ requires calculation of Lagrange polynomials

Implemented in DFO-LS package (Github: numerical algorithms group/dfols)
(Also have software for general objectives using quadratic interpolation)
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Scalability

= DFO methods are well-known not to scale well (i.e. n large)

— e.g. adversarial examples, weather forecasting/data assimilation, ...

Where is the issue for model-based DFO?
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Scalability

Runtime of DFO-LS on generalized Rosenbrock function:
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Interpolation

Interpolation linear system (for model construction):

(Y1 - Xk)T fi(Yl) - fi(Xk)
Sk,i = : , Vi=1,...,m,

(ynka)T ri(Yn)*ri(xk)

where Ji has rows g/ ..

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)
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Interpolation linear system (for model construction):
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Sk,i = : , Vi=1,...,m,

(ynka)T ri(Yn)*ri(Xk)

where Ji has rows g/ ..

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations
required?
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Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n — existing approaches

= Block Coordinate Descent: perturb subset of variables each iteration
[Xu & Yin (2017), Richtarik & Taka¢ (2014)]

= Block Coordinate Gauss-Newton: generalize BCD to least-squares

[Cartis & Fowkes (2018)]

Probabilistic direct search: random search direction at each iteration

[Gratton, Royer, Vicente & Zhang (2015)]
= Projection DFO methods: optimize over random subspace with existing method
[Qian, Hu & Yu (2016), Wang, Du, Balakrishnan & Singh (2018)]
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Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n
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Subspace Methods

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations
required?

Key idea: dimensionality reduction in n

Use interpolation set {Xx,y1,...,¥p} for p < n, then solve
(y1 - Xk)T r,-(yl) — r,-(xk)
: ki = , Vi=1,...,m.
(yp —x)" ri(yp) — ri(xx)

Underdetermined system = take minimal norm solution.
Cost = factorization + solve = O(np?) + O(mp?) ~ O(mp?)

Choose p based on computational resources

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 10



Subspace Methods

= Model only varies in subspace Vi := span{ys — Xk, ..., ¥p — X}

A

r(xx + Qk8) ~ My (8) 1= r(xx) + Ji8,

where Q, € R"*P is orthonormal basis for ) (from QR factorization).
= Solve trust-region subproblem in subspace
N N A 1. o
sk = QuSk, where §, = argmin fMk(8) = §||mk(s)||27
[I8]]2 <A

= Need a mechanism to explore whole space:
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Subspace Methods

= Model only varies in subspace Vi := span{ys — Xk, ..., ¥p — X}

r(xx + Qk8) ~ My (8) 1= r(xx) + Ji8,
where Q, € R"*P is orthonormal basis for ) (from QR factorization).
= Solve trust-region subproblem in subspace

R . o a 1o .
sk = QiSy, where §, = argmin fMk(8) = §||mk(s)||§7
[I8ll2<Ax

= Need a mechanism to explore whole space:

— i.e. need to change ) on each iteration
— Replace interpolation points with random directions (orthogonal to V)
— No free lunch: extra evaluations used to change ) to save on linear algebra
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Changing ),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

Build low-dimensional model and calculate trust-region step §; € RP
Evaluate f(xx + Q«Sk), accept/reject step, and update Ay (as before)
Add xj + QxSi to interpolation set

Remove pgrop > 2 points from the interpolation set

ok~ w0

Add random orthogonal directions xx + Agd for d L Yy until we have p + 1 interpolation
points
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Changing ),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

1. Build low-dimensional model and calculate trust-region step §, € RP
2. Evaluate f(xx + QxS), accept/reject step, and update Ay (as before)
3. Add x, + QxS to interpolation set
4. Remove pgrop = 2 points from the interpolation set
5. Add random orthogonal directions xx + Axd for d L Yy until we have p + 1 interpolation
points
Comments:

= pdrop > 2 ensures new direction(s) d added next iteration = Vi1 # V.
= Linear algebra cost O(mp? + np? + p®) vs. full space method O(mn? + n%)

= Choosing points to remove uses Lagrange polynomials (geometry-aware)
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Choice of pgrop

How to choose pg,,,?

= Large change to Yy each iteration (e.g. parop = p/10) — explore whole space quickly

= Small change to Y each iteration (e.g. pgrop = 2) — use few evaluations

= Compromise? (pgrop = 2 on successful iterations, p/10 on unsuccessful iterations)

1.0

0.8+

0.6

0.4+

Proportion problems solved

—8— Purop = p/10
— iy =2

trop ixed
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Numerical Results — high accuracy

Compare DFBGN method to DFO-LS (high accuracy 7 = 107°)
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0.4 —— DFO-LS
DFO-LS (init 1/100)
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Proportion problems solved
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Budget / min budget of any solver

n~ 100 [CUTEst]

Performance improves with increasing block size
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Numerical Results — low accuracy

Compare DFBGN method to DFO-LS (low accuracy 7 = 1071)
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n~ 100 [CUTEst]

DFBGN is more suitable for low accuracy solutions
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Numerical Results — high dimensional problems

High-dimensional test set n ~ 1000 [CUTEst], max 12hrs per problem

Proportion problems solved
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DFBGN outperforms DFO-LS for low accuracy solutions ...
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Timeout Rate

Proportion of problems where solver times out (before usual termination):

Solver Timeout

DFO-LS 93%
DFO-LS (init n/100) 98%

(
DFBGN (p = n/100)  35%
DFBGN (p = n/10) 74%
DFBGN (p = n/2) 82%
DFBGN (p = n) 66%

... because it doesn't time out
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Numerical Results — low budget

Other advantage: DFBGN make progress after p < n evaluations (especially important when n

large)
10° ™ 10°
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(normalized objective reduction vs. # evaluations, 12hr timeout)
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Convergence guarantees are available for a generic block method:

= Randomly select Qk independently at each iteration
= With probability 1 — 4, we have || Q] Vf(xk)| > || Vf(xk)
= Do not need to assume least-squares structure

For k sufficiently large,

, some a € (0,1)

C k
i M< —| >1—e¢
P L_r(gl_p?klw(xj)ll = ﬂ] >1-e,

for some ¢, C > 0.

Matches standard O(k~1/2) convergence rate for nonconvex problems with high probability.

(Proof another time)
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Conclusion & Future Work

Conclusions

= Model construction cost a key barrier to scalability of model-based DFO
= Subspace method gives cheaper linear algebra: O(n) vs. O(n%)

= Useful for: low accuracy, small budget, and/or limited computational resources

Future Work

= Sketching (dimensionality reduction in # residuals; WoMBaT talk)

= Extend to general objective problems (quadratic interpolation models)
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Choice of pgrop

Choise of pgrop prevents Ay too small too soon (need for convergence)
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(CUTEst problem LUKSAN13 with n = 100)
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