Block Methods for Scalable Derivative-Free Optimisation

With Coralia Cartis (Oxford)

Lindon Roberts, Mathematical Sciences Institute, ANU (lindon.roberts@anu.edu.au)

64th Annual Meeting of the Australian Mathematical Society (University of New England)
9 December 2020

1. Derivative-free optimization for least-squares problems

2. Scalability bottleneck
3. Model-based subspace method
4. Results

5. Convergence theory

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

Derivative-Free Optimization

£)

= Objective f nonlinear, nonconvex, structure unknown

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Derivative-Free Optimization

£)

= Objective f nonlinear, nonconvex, structure unknown

= Standard methods locally approximate f by quadratic models (e.g. Taylor series)
= How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation [aka backpropagation]

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Derivative-Free Optimization

£)

= Objective f nonlinear, nonconvex, structure unknown

Standard methods locally approximate f by quadratic models (e.g. Taylor series)
= How to calculate derivatives of f to build model?
— Write code by hand
— Finite differences
— Algorithmic differentiation [aka backpropagation]
= Difficulties when function evaluation is
— ‘Black-box’
— Noisy
— Computationally expensive

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Derivative-Free Optimization

£)

= Objective f nonlinear, nonconvex, structure unknown

= Standard methods locally approximate f by quadratic models (e.g. Taylor series)
= How to calculate derivatives of f to build model?

— Write code by hand

— Finite differences

— Algorithmic differentiation [aka backpropagation]
= Difficulties when function evaluation is

— ‘Black-box’

— Noisy

— Computationally expensive

= Alternative — derivative-free optimization (DFO) [aka “zero-order methods”]

— Applications in finance, climate, image analysis, data science, engineering, ...

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 2

Model-Based DFO — Basic ldeas

Many approaches: model-based, direct search, Nelder-Mead, ...

= Classically (e.g. Newton's method),

1
F(xk +5) = mi(s) = f(xk) + VF(xe) s + ESTV2f(xk)s

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 3

Model-Based DFO — Basic ldeas

Many approaches: model-based, direct search, Nelder-Mead, ...

= Classically (e.g. Newton's method),

1
F(xk +5) = mi(s) = f(xk) + VF(xe) s + ESTV2f(xk)s

= |nstead, approximate

1
f(xk +5) = m(s) = f(xx) +g s+ ESTHks

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 3

Model-Based DFO — Basic ldeas

Many approaches: model-based, direct search, Nelder-Mead, ...

= Classically (e.g. Newton's method),

1
F(xk +5) = mi(s) = f(xk) + VF(xe) s + ESTV2f(xk)s

= |nstead, approximate

1
f(xk +5) = m(s) = f(xx) +g s+ ESTHks

= Find gx and Hy without using derivatives: interpolate f over a set of points
= Geometry of points gopod = interpolation model accurate = convergence

[Conn, Powell, Scheinberg, Vicente, ...]

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 3

DFO for Least-S es — Basic Framework

H _ 1 2 m
min f(x) =3llrllz, rlx) R

Classical Gauss-Newton Derivative-Free Gauss-Newton

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-S es — Basic Framework

1
in f(x) == 2, €R™
min £() = 5 IrG)B o)
Classical Gauss-Newton Derivative-Free Gauss-Newton

= Linearize r at x4 using Jacobian

r(x +) = Mi(s) = r(xk) + J(x)s

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-Squares — Basic Framework

min f(x) = 1||r(x)||§, r(x) e R™

xERn 2
Classical Gauss-Newton Derivative-Free Gauss-Newton
= Linearize r at x4 using Jacobian = Jacobian not available: use
F(Xk + S) ~ Mk(S) = I‘(Xk) + J(Xk)S Mk(S) = r(xk) + Jis

= Find Jx by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-Squares — Basic Framework

min f(x) = 1||r(x)||§, r(x) e R™

xERn 2
Classical Gauss-Newton Derivative-Free Gauss-Newton
= Linearize r at x4 using Jacobian = Jacobian not available: use
F(Xk + S) ~ Mk(S) = I‘(Xk) + J(Xk)S Mk(S) = r(xk) + Jis

= Find Jx by interpolation — maintain a
cloud of points which moves towards
solution (with good geometry)

In both cases, get a local quadratic model (with approximate Hessian)

o+ 5) ~ mil(s) = 5 IM(9)]3

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 4

DFO for Least-Squares — Algorithm

Implement in trust-region method:

1. Build interpolation model
1
Fa + 5) = mi(s) i= 5 [IMk(s)Il3.
2. Minimize model inside trust region

sk = argmin my(s) st |[s]l2 < Ag.
sER"

3. Evaluate f(xx + sk), check sufficient decrease, select xx+1 and Agyq

4. Update interpolation set: add xx + s, and move points to ensure good geometry (if needed)
<+ requires calculation of Lagrange polynomials

Implemented in DFO-LS package (Github: numerical algorithms group/dfols)
(Also have software for general objectives using quadratic interpolation)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 5

Scalability

= DFO methods are well-known not to scale well (i.e. n large)

— e.g. adversarial examples, weather forecasting/data assimilation, ...

Where is the issue for model-based DFO?

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 6

Scalability

Runtime of DFO-LS on generalized Rosenbrock function:

250007 mmm Model construction
I Lagrange polynomial construction

I Other
20000

= 15000

Runtime

10000 4

5000

0 T T ¥
100 200 300 400 500 600 700 800 900 1000

n
Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

Interpolation

Interpolation linear system (for model construction):

(Y1 - Xk)T fi(Yl) - fi(Xk)
Sk,i = : , Vi=1,...,m,

(ynka)T ri(Yn)*ri(xk)

where Ji has rows g/ ..

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 8

Interpolation

Interpolation linear system (for model construction):

(Y1 - Xk)T fi(Yl) - fi(Xk)
Sk,i = : , Vi=1,...,m,

(ynka)T ri(Yn)*ri(Xk)

where Ji has rows g/ ..

Cost = factorization + solve = O(n®) + O(mn?) ~ O(mn?)

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations
required?

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 8

Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n — existing approaches

= Block Coordinate Descent: perturb subset of variables each iteration
[Xu & Yin (2017), Richtarik & Taka¢ (2014)]

= Block Coordinate Gauss-Newton: generalize BCD to least-squares

[Cartis & Fowkes (2018)]

Probabilistic direct search: random search direction at each iteration

[Gratton, Royer, Vicente & Zhang (2015)]
= Projection DFO methods: optimize over random subspace with existing method
[Qian, Hu & Yu (2016), Wang, Du, Balakrishnan & Singh (2018)]

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

Subspace M

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations

required?

Key idea: dimensionality reduction in n

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 10

Subspace Methods

Can we construct a method with reduced interpolation cost, but still efficient in # evaluations
required?

Key idea: dimensionality reduction in n

Use interpolation set {Xx,y1,...,¥p} for p < n, then solve
(y1 - Xk)T r,-(yl) — r,-(xk)
: ki = , Vi=1,...,m.
(yp —x)" ri(yp) — ri(xx)

Underdetermined system = take minimal norm solution.
Cost = factorization + solve = O(np?) + O(mp?) ~ O(mp?)

Choose p based on computational resources

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 10

Subspace Methods

= Model only varies in subspace Vi := span{ys — Xk, ..., ¥p — X}

A

r(xx + Qk8) ~ My (8) 1= r(xx) + Ji8,

where Q, € R"*P is orthonormal basis for) (from QR factorization).
= Solve trust-region subproblem in subspace
N N A 1. o
sk = QuSk, where §, = argmin fMk(8) = §||mk(s)||27
[I8]]2 <A

= Need a mechanism to explore whole space:

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 11

Subspace Methods

= Model only varies in subspace Vi := span{ys — Xk, ..., ¥p — X}

r(xx + Qk8) ~ My (8) 1= r(xx) + Ji8,
where Q, € R"*P is orthonormal basis for) (from QR factorization).
= Solve trust-region subproblem in subspace

R . o a 1o .
sk = QiSy, where §, = argmin fMk(8) = §||mk(s)||§7
[I8ll2<Ax

= Need a mechanism to explore whole space:

— i.e. need to change) on each iteration
— Replace interpolation points with random directions (orthogonal to V)
— No free lunch: extra evaluations used to change) to save on linear algebra

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 11

Changing),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

Build low-dimensional model and calculate trust-region step §; € RP
Evaluate f(xx + Q«Sk), accept/reject step, and update Ay (as before)
Add xj + QxSi to interpolation set

Remove pgrop > 2 points from the interpolation set

ok~ w0

Add random orthogonal directions xx + Agd for d L Yy until we have p + 1 interpolation
points

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 12

Changing),

Algorithm DFBGN (Derivative-Free Block Gauss-Newton):

1. Build low-dimensional model and calculate trust-region step §, € RP
2. Evaluate f(xx + QxS), accept/reject step, and update Ay (as before)
3. Add x, + QxS to interpolation set
4. Remove pgrop = 2 points from the interpolation set
5. Add random orthogonal directions xx + Axd for d L Yy until we have p + 1 interpolation
points
Comments:

= pdrop > 2 ensures new direction(s) d added next iteration = Vi1 # V.
= Linear algebra cost O(mp? + np? + p®) vs. full space method O(mn? + n%)

= Choosing points to remove uses Lagrange polynomials (geometry-aware)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 12

Choice of pgrop

How to choose pg,,,?

= Large change to Yy each iteration (e.g. parop = p/10) — explore whole space quickly

= Small change to Y each iteration (e.g. pgrop = 2) — use few evaluations

= Compromise? (pgrop = 2 on successful iterations, p/10 on unsuccessful iterations)

1.0

0.8+

0.6

0.4+

Proportion problems solved

—8— Purop = p/10
— iy =2

trop ixed

Improving scalability of model-based DFO — Lindon Roberts (1indon

Budget / min budget of any solver

DFBGN, p = n/4

32

10

0.8
3 P D Tt elete=teente et
E -
] /
7 /
Zo6t——
= 1
2 1
a 7
= /
5 04t
£ ’
2 /
2
=%

0.24 —— Purop = p/10
— P =2
=== Purop mixed

0.0

1 2 4 3 16 32
Budget / min budget of any solver
DFBGN, p=n
.roberts@anu.edu.au)

13

Numerical Results — high accuracy

Compare DFBGN method to DFO-LS (high accuracy 7 = 107°)

0.8 1

0.6 4

0.4 —— DFO-LS
DFO-LS (init 1/100)
—— DFBGN (p=n)

Proportion problems solved

0.2 F=og=== +=" ==- DFBGN (p=n/2) 9
’,,”' e DFBGN (p = n/10)
- ———r e _x= 3N (p =
o PN St S DFBGN (p = n/100)
At 2 4 8 16 32
Budget / min budget of any solver

n~ 100 [CUTEst]

Performance improves with increasing block size

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 14

Numerical Results — low accuracy

Compare DFBGN method to DFO-LS (low accuracy 7 = 1071)

0.8 1

0.6 4

—— l])]’O—[AS
DFO-LS (init 1/100)
—— DFBGN (p=n)
==+ DFBGN (p=n/2)
-e- DFBCN (p = n/10)

N
=

Proportion problems solved

0.2

S , L
L -x- DFBGN (p = n/100)
0.0 fm=BZ ; I I
1 2 1 3 16 32
Budget / min budget of any solver

n~ 100 [CUTEst]

DFBGN is more suitable for low accuracy solutions

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 15

Numerical Results — high dimensional problems

High-dimensional test set n ~ 1000 [CUTEst], max 12hrs per problem

Proportion problems solved

1.0

0.84

0.6 1

0.4

0.2 4

0.0

=& = = P

B
L

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)

- DFBGN (p = n/2)
DFBGN (p =n/10)
DFBGN (p = 1/100)

T T T
4 8 16 32
Budget / min budget of any solver

7 = 0.5, vs. budget

Proportion problems solved

1.0

0.8+

0.6

- DFBGN (p = n/2)

DFO-LS
DFO-LS (init n/100)
DFBGN (p = n)

DFBGN (p =n/10)
DFBGN (p = 1/100) e

2 4 8 16 32
Budget / min budget of any solver

7 = 0.1, vs. budget

DFBGN outperforms DFO-LS for low accuracy solutions ...

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au)

16

Timeout Rate

Proportion of problems where solver times out (before usual termination):

Solver Timeout

DFO-LS 93%
DFO-LS (init n/100) 98%

(
DFBGN (p = n/100) 35%
DFBGN (p = n/10) 74%
DFBGN (p = n/2) 82%
DFBGN (p = n) 66%

... because it doesn't time out

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 17

Numerical Results — low budget

Other advantage: DFBGN make progress after p < n evaluations (especially important when n

large)
10° ™ 10°
| —e— DFOLS
H DFO-LS (init n/100) 9x107!
I — =
1 -=- p=n/2 g 8x107
b e p=n/10 =
] p=n/ =
B V== p=n/100 £ 7x10
= 4x107! =
] 5
= 6 -1
I - g | /== prois
g * E DFO-LS (init n/100)
: s
- k10
5% 10 —— p=n2
2107 -®- p=n/l0
-%= p=n/100
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
Budget (in gradients) Budget (in gradients)
ARWHDNE, n = 2000 CHANDHEQ, n = 2000

(normalized objective reduction vs. # evaluations, 12hr timeout)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 18

Convergence guarantees are available for a generic block method:

= Randomly select Qk independently at each iteration
= With probability 1 — 4, we have || Q] Vf(xk)| > || Vf(xk)
= Do not need to assume least-squares structure

For k sufficiently large,

, some a € (0,1)

C k
i M< —| >1—e¢
P L_r(gl_p?klw(xj)ll = ﬂ] >1-e,

for some ¢, C > 0.

Matches standard O(k~1/2) convergence rate for nonconvex problems with high probability.

(Proof another time)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 19

Conclusion & Future Work

Conclusions

= Model construction cost a key barrier to scalability of model-based DFO
= Subspace method gives cheaper linear algebra: O(n) vs. O(n%)

= Useful for: low accuracy, small budget, and/or limited computational resources

Future Work

= Sketching (dimensionality reduction in # residuals; WoMBaT talk)

= Extend to general objective problems (quadratic interpolation models)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 20

References

@ Coralia Cartis, Jan Fiala, Benjamin Marteau, and Lindon Roberts.
Improving the flexibility and robustness of model-based derivative-free
optimization solvers.

ACM Transactions on Mathematical Software, 45(3):32:1-32:41, 2019.

@ Coralia Cartis and Lindon Roberts.
A derivative-free Gauss-Newton method.
Mathematical Programming Computation, 11(4):631-674, 2019.

@ Coralia Cartis and Lindon Roberts.
Scalable block methods for derivative-free nonlinear least-squares optimization.
in preparation, 2020.

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 21

Choice of pgrop

Choise of pgrop prevents Ay too small too soon (need for convergence)

10°
__________ —_ A A F10-t
W ANPEE s —
" - Ll w0 b
—e— /(xx) normalised —— flw) normalised [y,
g 10!
10 =
=
_ 6x107 2
= 10 z ;2
E 5 S
g 1078 g g
1x 107
1075 3 10")
-
107 ax10 107 101
0 5 10 15 20 25 30 35 0 200 400 600 800 1000 1200 1400 1600
Iteration Tteration
Pdrop = 2 Pdrop mixed

(CUTEst problem LUKSAN13 with n = 100)

Improving scalability of model-based DFO — Lindon Roberts (1indon.roberts@anu.edu.au) 22

